High-Frequency Ventilation in the Treatment of Acute Respiratory Failure
- Authors: Perepelitsa S.A.1,2, Kuzovlev A.N.2
-
Affiliations:
- Imannuel Kant Baltic Federal University
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
- Issue: Vol 3, No 1 (2021)
- Pages: 63-73
- Section: REVIEWS
- URL: https://journals.rcsi.science/2658-6843/article/view/63248
- DOI: https://doi.org/10.36425/rehab63248
- ID: 63248
Cite item
Full Text
Abstract
The need for respiratory therapy can reach 90% depending on the category of the intensive care unit and intensive care unit (ICU). Currently is a wide selection of respiratory therapy methods, including fully controlled mechanical ventilation and assist ventilation. The widespread use of mechanical ventilation and its varieties significantly reduced the mortality of ICU patients. However, the mortality of patients from acute respiratory distress syndrome, nosocomial pneumonia, and newborns with respiratory disorders remains high. High-frequency mechanical ventilation (HFMV) is an alternative treatment for severe respiratory failure, but the frequency of use is not yet sufficient. Three main types of HF ventilation is currently available: high-frequency positive pressure ventilation (HFPPV), high-frequency jet ventilation (HFJV) and high-frequency oscillatory ventilation (HFOV). There is an opportunity to choose a specific mode which will be most applicable for a particular patient. The use of the HFOV method allows the successful treatment of newborns with severe respiratory failure due to primary surfactant deficiency, meconial aspiration or multiple organ failure. Recently high amount of publications appeared on the possibilities of non-invasive HFMV in both adult patients and in pediatrics. This mini-review is devoted to this problem.
Full Text
##article.viewOnOriginalSite##About the authors
Svetlana A. Perepelitsa
Imannuel Kant Baltic Federal University; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Author for correspondence.
Email: sveta_perepeliza@mail.ru
ORCID iD: 0000-0002-4535-9805
Dr. Sci. (Med.), Professor, Senior Research Associate
Russian Federation, Kaliningrad; MoscowArtem N. Kuzovlev
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Email: artem_kuzovlev@mail.ru
ORCID iD: 0000-0002-5930-0118
Dr. Sci. (Med.), Assistant Professor
Russian Federation, MoscowReferences
- World Health Organization. The top 10 causes of death [accessed 2018 Sept 1]. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/
- GBD 2016 Lower Respiratory Infections Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18(11):1191–1210. doi: 10.1016/S1473-3099(18)30310-4
- Corrêa RA, José BP, Malta DC, et al. Burden of disease by lower respiratory tract infections in Brazil, 1990 to 2015: estimates of the Global Burden of Disease 2015 study. Rev Bras Epidemiol. 2017;20(Suppl 1):171–181. doi: 10.1590/1980-5497201700050014
- Здравоохранение в России. 2019: Стат. сб. / Росстат. Москва, 2019. 170 с. [Healthcare in Russia. Moscow; 2019. 170 p. (In Russ).]
- Prina E, Ranzani OT, Torres A. Community-acquired pneumonia. Lancet. 2015;38(9998):1097–1108. doi: 10.1016/S0140-6736(15)60733-4
- Yadav H, Thompson BT, Gajic O. Fifty years of research in ARDS. Is acute respiratory distress syndrome a preventable disease? Am J Respir Crit Care Med. 2017;195(6):725–736. doi: 10.1164/rccm.201609-1767CI
- Dembinski R, Mielck F. [ARDS — an update — Part 1: Epidemiology, pathophysiology and diagnosis. (In German)]. Anasthesiol Intensivmed Notfallmed Schmerzther. 2018; 53(2):102–111. doi: 10.1055/s-0043-107166
- Peck TJ, Hibbert KA. Recent advances in the understanding and management of ARDS. F1000Res. 2019;8:F1000. doi: 10.12688/f1000 research.20411.1
- Kovacs G, Sowers N. Airway management in trauma. Emerg Med Clin North Am. 2018;36(1):61–84. doi: 10.1016/j.emc.2017.08.006
- El Mestoui Z, Jalalzadeh H, Giannakopoulos GF, et al. Incidence and etiology of mortality in polytrauma patients in a Dutch level I trauma center. Eur J Emerg Med. 2017; 24(1):49–54. doi: 10.1097/MEJ.0000000000000293
- Tarng YW, Liu YY, Huang FD, et al. The surgical stabilization of multiple rib fractures using titanium elastic nail in blunt chest trauma with acute respiratory failure. Surg Endosc. 2016;30(1):388–395. doi: 10.1007/s00464-015-4207-9
- Hind CR. Neurogenic respiratory failure. Handb Clin Neurol. 2013;110:295–302. doi: 10.1016/B978-0-444-52901-5.00024-1
- Falsaperla R, Elli M, Pavone P, et al. Noninvasive ventilation for acute respiratory distress in children with central nervous system disorders. Respir Med. 2013;107(9): 1370–1375. doi: 10.1016/j.rmed.2013.07.005
- Erdoğan S, Yakut K, Kalın S. Acute encephalitis and myocarditis associated with respiratory syncytial virus infections. Turk J Anaesthesiol Reanim. 2019;47(4):348–351. doi: 10.5152/TJAR.2019.52028
- Cassini A, Plachouras D, Eckmanns T, et al. Burden of six healthcare-associated infections on European population health: estimating incidence-based disability-adjusted life years through a population prevalence-based modelling study. PLoS Med. 2016;13(10):e1002150. doi: 10.1371/journal.pmed.1002150
- Arefian H, Vogel M, Kwetkat A, et al. Economic evaluation of interventions for prevention of hospital acquired infections: a systematic review. PLoS One. 2016; 11(1):e0146381. doi: 10.1371/journal.pone.0146381
- Walter J, Haller S, Quinten C, et al. Healthcare-associated pneumonia in acute care hospitals in European Union / European Economic Area countries: an analysis of data from a point prevalence survey, 2011 to 2012. Euro Surveill. 2018;23(32):1700843. doi: 10.2807/1560-7917.ES.2018.23.32.1700843
- Pillai A, Daga V, Lewis J, et al. High-flow humidified nasal oxygenation vs. standard face mask oxygenation. Anaesthesia. 2016;71(11):1280–1283. doi: 10.1111/anae.13607
- Huang HW, Sun XM, Shi ZH, et al. Effect of high-flow nasal cannula oxygen therapy versus conventional oxygen therapy and noninvasive ventilation on reintubation rate in adult patients after extubation: A systematic review and meta-analysis of randomized controlled trials. J Intensive Care Med. 2018;33(11):609–623. doi: 10.1177/0885066617705118
- Pickard K, Harris S. High flow nasal oxygen therapy. Br J Hosp Med (Lond). 2018;79(1):C13–C15. doi: 10.12968/hmed.2018.79.1.C13
- Bourke SC, Piraino T, Pisani L, et al. Beyond the guidelines for non-invasive ventilation in acute respiratory failure: implications for practice. Lancet Respir Med. 2018; 6(12):935–947. doi: 10.1016/S2213-2600(18)30388-6
- Nicolini A, Ferrando M, Solidoro P, et al. Non-invasive ventilation in acute respiratory failure of patients with obesity hypoventilation syndrome. Minerva Med. 2018;109(6 Suppl 1):1–5. doi: 10.23736/S0026-4806.18.05921-9
- Morley SL. Non-invasive ventilation in paediatric critical care. Paediatr Respir Rev. 2016;20:24–31. doi: 10.1016/j.prrv.2016.03.001
- Singer BD, Corbridge TC. Basic invasive mechanical ventilation. South Med J. 2009;102(12):1238–1245. doi: 10.1097/SMJ.0b013e3181bfac4f
- Jaber S, Bellani G, Blanch L, et al. The intensive care medicine research agenda for airways, invasive and noninvasive mechanical ventilation. Intensive Care Med. 2017;43(9):1352–1365. doi: 10.1007/s00134-017-4896-8
- Walter JM, Corbridge TC, Singer BD. Invasive mechanical ventilation. South Med J. 2018;111(12):746–753. doi: 10.14423/SMJ.0000000000000905
- Терек П., Калиг К. Теоретические основы высокочастотной вентиляции. Екатеринбург: АМБ, 2005. 192 с. [Terek P, Kaliq K. Theoretical foundations of high-frequency ventilation. Yekaterinburg: AMB; 2005. 192 p. (In Russ).]
- Любименко В.А., Мостовой А.В., Иванов С.Л. Высокочастотная искусственная вентиляция легких в неонатологии. Москва, 2002. 126 с. [Lyubimenko VA, Mostovoy AV, Ivanov SL. High-frequency artificial ventilation lung diseases in neonatology. Moscow; 2002. 126 p. (In Russ).]
- Putz L, Mayné A, Dincq AS. Jet ventilation during rigid bronchoscopy in adults: a focused review. Biomed Res Int. 2016;2016:4234861. doi: 10.1155/2016/4234861
- Fritzsche K, Osmers A. [Anesthetic management in laryngotracheal surgery. High-frequency jet ventilation as strategy for ventilation during general anesthesia. (In German)]. Anaesthesist. 2010;59(11):1051–1061; quiz 1062-3. doi: 10.1007/s00101-010-1815-6
- Klain M, Keszler H. High-frequency jet ventilation. Surg Clin North Am. 1985;65(4):917–930. doi: 10.1016/s0039-6109(16)43687-x
- Evans E, Biro P, Bedforth N. Jet ventilation. Continuing Education in Anaesthesia Critical Care & Pain. 2007;7(1): 2–5. doi: 10.1093/bjaceaccp/mkl061
- Goudra BG, Singh PM, Borle A, et al. Anesthesia for advanced bronchoscopic procedures: state-of-the-art review. Lung. 2015;193(4):453–465. doi: 10.1007/s00408-015-9733-7
- Buchan T, Walkden M, Jenkins K, et al. High-frequency jet ventilation during cryoablation of small renal tumours. Cardiovasc Intervent Radiol. 2018;41(7):1067–1073. doi: 10.1007/s00270-018-1921-4
- Chung DY, Tse DM, Boardman P, et al. High-frequency jet ventilation under general anesthesia facilitates CT-guided lung tumor thermal ablation compared with normal respiration under conscious analgesic sedation. J Vasc Interv Radiol. 2014;25(9):1463–1469. doi: 10.1016/j.jvir.2014.02.026
- Denys A, Lachenal Y, Duran R, et al. Use of high-frequency jet ventilation for percutaneous tumor ablation. Cardiovasc Intervent Radiol. 2014;37(1):140–146. doi: 10.1007/s00270-013-0620-4
- Raiten J, Elkassabany N, Mandel JE. The use of high-frequency jet ventilation for out of operating room anesthesia. Curr Opin Anaesthesiol. 2012;25(4):482–485. doi: 10.1097/ACO.0b013e3283554375
- Galmén K, Freedman J, Toporek G, et al. Clinical application of high frequency jet ventilation in stereotactic liver ablations – a methodological study. F1000Res. 2018; 7:773. doi: 10.12688/f1000research.14873.2
- Abderhalden S, Biro P, Hechelhammer L, et al. CT-guided navigation of percutaneous hepatic and renal radiofrequency ablation under high-frequency jet ventilation: feasibility study. J Vasc Interv Radiol. 2011;22(9): 1275–1278. doi: 10.1016/j.jvir.2011.04.013
- Abedini A, Kiani A, Taghavi K, et al. High-Frequency jet ventilation in nonintubated patients. Turk Thorac J. 2018; 19(3):127–131. doi: 10.5152/TurkThoracJ.2018.17025
- Boatta E, Jahn C, Canuet M, et al. Pulmonary arteriovenous malformations embolized using a micro vascular plug system: technical note on a preliminary experience. Cardiovasc Intervent Radiol. 2017;40(2):296–301. doi: 10.1007/s00270-016-1493-0
- Galmén K, Harbut P, Freedman J, et al. The use of high-frequency ventilation during general anaesthesia: an update. F1000Res. 2017;6:756. doi: 10.12688/f1000research.10823.1
- Boatta E, Cazzato RL, De Marini P, et al. Embolisation of pulmonary arteriovenous malformations using high-frequency jet ventilation: benefits of minimizing respiratory motion. Eur Radiol Exp. 2019;3(1):26. doi: 10.1186/s41747-019-0103-8
- Мороз В.В., Власенко А.В., Голубев А.М. ОРДС — патогенез и терапевтические мишени // Анестезиология и реаниматология. 2014. Т. 59, № 4. Р. 45–52. [Moroz VV, Vlasenko AV, Golubev AM. Pathogenesis and target therapy of ards. Anesthesiology and Resuscitation. 2014;59(4):45–52. (In Russ).]
- Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–2533. doi: 10.1001/jama.2012.5669
- Caironi P, Carlesso E, Cressoni M, et al. Lung recruitability is better estimated according to the Berlin definition of acute respiratory distress syndrome at standard 5 cm H2O rather than higher positive end-expiratory pressure: a retrospective cohort study. Crit Care Med. 2015;43(4): 781–790. doi: 10.1097/CCM.0000000000000770
- Chiumello D, Brioni M. Severe hypoxemia: which strategy to choose. Crit Care. 2016;20(1):132. doi: 10.1186/s13054-016-1304-7
- Cherian SV, Kumar A, Akasapu K, et al. Salvage therapies for refractory hypoxemia in ARDS. Respir Med. 2018;141: 150–158. doi: 10.1016/j.rmed.2018.06.030
- Facchin F, Fan E. Airway pressure release ventilation and high-frequency oscillatory ventilation: potential strategies to treat severe hypoxemia and prevent ventilator-induced lung injury. Respir Care. 2015;60(10):1509–1521. doi: 10.4187/respcare.04255
- Sklar MC, Fan E, Goligher EC. High-Frequency oscillatory ventilation in adults with ARDS: past, present, and future. Chest. 2017;152(6):1306–1317. doi: 10.1016/j.chest.2017.06.025
- Klapsing P, Moerer O, Wende C, et al. High-frequency oscillatory ventilation guided by transpulmonary pressure in acute respiratory syndrome: an experimental study in pigs. Crit Care. 2018;22(1):121. doi: 10.1186/s13054-018-2028-7
- Young D, Lamb SE, Shah S, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368(9):806–813. doi: 10.1056/NEJMoa1215716
- Ferguson ND, Cook DJ, Guyatt GH, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368(9):795–805. doi: 10.1056/NEJMoa1215554
- Vincent JL. High-frequency oscillation in acute respiratory distress syndrome. The end of the story? Am J Respir Crit Care Med. 2017;196(6):670–671. doi: 10.1164/rccm.201703-0475ED
- Derdak S, Mehta S, Stewart TE, et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med. 2002;166(6):801–808. doi: 10.1164/rccm.2108052
- Bollen CW, van Well GT, Sherry T, et al. High frequency oscillatory ventilation compared with conventional mechanical ventilation in adult respiratory distress syndrome: a randomized controlled trial [ISRCTN24242669]. Crit Care. 2005;9(4):R430–R439. doi: 10.1186/cc3737
- Ng J, Ferguson ND. High-frequency oscillatory ventilation: still a role? Curr Opin Crit Care. 2017;23(2):175–179. doi: 10.1097/MCC.0000000000000387
- Gattinoni L, Taccone P, Carlesso E, et al. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits. Am J Respir Crit Care Med. 2013;188(11): 1286–1293. doi: 10.1164/rccm.201308-1532CI
- Scholten EL, Beitler JR, Prisk GK, et al. Treatment of ARDS with prone positioning. Chest. 2017;151(1):215–224. doi: 10.1016/j.chest.2016.06.032
- Duan EH, Adhikari NK, D’Aragon F, et al. Management of acute respiratory distress syndrome and refractory hypoxemia. a multicenter observational study. Ann Am Thorac Soc. 2017;14(12):1818–1826. doi: 10.1513/AnnalsATS.201612-1042OC
- Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–1116. doi: 10.1056/NEJMoa1005372
- Mehta C, Mehta Y. Management of refractory hypoxemia. Ann Card Anaesth. 2016;19(1):89–96. doi: 10.4103/0971-9784.173030
- Cherian SV, Kumar A, Akasapu K, et al. Salvage therapies for refractory hypoxemia in ARDS. Respir Med. 2018;141: 150–158. doi: 10.1016/j.rmed.2018.06.030
- Kunugiyama SK, Schulman CS. High-frequency percussive ventilation using the VDR-4 ventilator: an effective strategy for patients with refractory hypoxemia. AACN Adv Crit Care. 2012;23(4):370–380. doi: 10.1097/NCI.0b013e31826e9031
- Salim A, Martin M. High-frequency percussive ventilation. Crit Care Med. 2005;33(3 Suppl):S241–245. doi: 10.1097/01.ccm.0000155921.32083.ce
- Kinthala S, Liang M, Khusid F, et al. The use of high-frequency percussive ventilation for whole-lung lavage: a case report. A A Pract. 2018;11(8):205–207. doi: 10.1213/XAA.0000000000000778
- Gulkarov I, Schiffenhaus J, Wong I, et al. High-frequency percussive ventilation facilitates weaning from extracorporeal membrane oxygenation in adults. J Extra Corpor Technol. 2018;50(1):53–57.
- Godet T, Jabaudon M, Blondonnet R, et al. High frequency percussive ventilation increases alveolar recruitment in early acute respiratory distress syndrome: an experimental, physiological and CT scan study. Crit Care. 2018;22(1):3. doi: 10.1186/s13054-017-1924-6
- Spapen H, De Regt J, van Gorp V, Honoré PM. High-frequency percussive ventilation in acute respiratory distress syndrome: knocking at the door but can it be let in? Crit Care. 2018;22(1):55. doi: 10.1186/s13054-018-1982-4
- Michaels AJ, Hill JG, Sperley BP, et al. Use of HFPV for adults with ARDS: the protocolized use of high-frequency percussive ventilation for adults with acute respiratory failure treated with extracorporeal membrane oxygenation. ASAIO J. 2015;61(3):345–349. doi: 10.1097/MAT.0000000000000196
- Boscolo A, Peralta A, Baratto F, et al. High-frequency percussive ventilation: a new strategy for separation from extracorporeal membrane oxygenation. A A Case Rep. 2015; 4(7):79–84. doi: 10.1213/XAA.0000000000000131
- Wong I, Worku B, Weingarten JA, et al. High-frequency percussive ventilation in cardiac surgery patients failing mechanical conventional ventilation. Interact Cardiovasc Thorac Surg. 2017;25(6):937–941. doi: 10.1093/icvts/ivx237
- Korzhuk A, Afzal A, Wong I, et al. High-frequency percussive ventilation rescue therapy in morbidly obese patients failing conventional mechanical ventilation. J Intensive Care Med. 2018:885066618769596. doi: 10.1177/0885066618769596
- Starnes-Roubaud M, Bales EA, Williams-Resnick A, et al. High frequency percussive ventilation and low FiO(2). Burns. 2012;38(7):984–991. doi: 10.1016/j.burns.2012.05.026
- Carvalho I, Querido S, Silvestre J, et al. Heliox in the treatment of status asthmaticus: case reports. Rev Bras Ter Intensiva. 2016;28(1):87–91. doi: 10.5935/0103-507X.20160005
- Keenan LM, Hoffman TL. Refractory status asthmaticus: treatment with sevoflurane. Fed Pract. 2019;36(10):476–479.
- Maqsood U, Patel N. Extracorporeal membrane oxygenation (ECMO) for near-fatal asthma refractory to conventional ventilation. BMJ Case Rep. 2018;2018.bcr-2017-223276. doi: 10.1136/bcr-2017-223276
- Lam E, Rochani A, Kaushal G, et al. Pharmacokinetics of ketamine at dissociative doses in an adult patient with refractory status asthmaticus receiving extracorporeal membrane oxygenation therapy. Clin Ther. 2019;41(5): 994–999. doi: 10.1016/j.clinthera.2019.03005
- LaGrew JE, Olsen KR, Frantz A. Volatile anaesthetic for treatment of respiratory failure from status asthmaticus requiring extracorporeal membrane oxygenation. BMJ Case Rep. 2020;13(1):e231507. doi: 10.1136/bcr-2019-231507
- Albecker D, Bouder TG, Lewis BF. High frequency percussive ventilation as a rescue mode for refractory status asthmaticus — a case study. J Asthma. 2021;58(3):340–343. doi: 101080/02770903.2019.1687714
Supplementary files
