High-Frequency Ventilation in the Treatment of Acute Respiratory Failure

Cover Page

Cite item

Full Text

Abstract

The need for respiratory therapy can reach 90% depending on the category of the intensive care unit and intensive care unit (ICU). Currently is a wide selection of respiratory therapy methods, including fully controlled mechanical ventilation and assist ventilation. The widespread use of mechanical ventilation and its varieties significantly reduced the mortality of ICU patients. However, the mortality of patients from acute respiratory distress syndrome, nosocomial pneumonia, and newborns with respiratory disorders remains high. High-frequency mechanical ventilation (HFMV) is an alternative treatment for severe respiratory failure, but the frequency of use is not yet sufficient. Three main types of HF ventilation is currently available: high-frequency positive pressure ventilation (HFPPV), high-frequency jet ventilation (HFJV) and high-frequency oscillatory ventilation (HFOV). There is an opportunity to choose a specific mode which will be most applicable for a particular patient. The use of the HFOV method allows the successful treatment of newborns with severe respiratory failure due to primary surfactant deficiency, meconial aspiration or multiple organ failure. Recently high amount of publications appeared on the possibilities of non-invasive HFMV in both adult patients and in pediatrics. This mini-review is devoted to this problem.

About the authors

Svetlana A. Perepelitsa

Imannuel Kant Baltic Federal University; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Author for correspondence.
Email: sveta_perepeliza@mail.ru
ORCID iD: 0000-0002-4535-9805

Dr. Sci. (Med.), Professor, Senior Research Associate

Russian Federation, Kaliningrad; Moscow

Artem N. Kuzovlev

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: artem_kuzovlev@mail.ru
ORCID iD: 0000-0002-5930-0118

Dr. Sci. (Med.), Assistant Professor

Russian Federation, Moscow

References

  1. World Health Organization. The top 10 causes of death [accessed 2018 Sept 1]. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/
  2. GBD 2016 Lower Respiratory Infections Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18(11):1191–1210. doi: 10.1016/S1473-3099(18)30310-4
  3. Corrêa RA, José BP, Malta DC, et al. Burden of disease by lower respiratory tract infections in Brazil, 1990 to 2015: estimates of the Global Burden of Disease 2015 study. Rev Bras Epidemiol. 2017;20(Suppl 1):171–181. doi: 10.1590/1980-5497201700050014
  4. Здравоохранение в России. 2019: Стат. сб. / Росстат. Москва, 2019. 170 с. [Healthcare in Russia. Moscow; 2019. 170 p. (In Russ).]
  5. Prina E, Ranzani OT, Torres A. Community-acquired pneumonia. Lancet. 2015;38(9998):1097–1108. doi: 10.1016/S0140-6736(15)60733-4
  6. Yadav H, Thompson BT, Gajic O. Fifty years of research in ARDS. Is acute respiratory distress syndrome a preventable disease? Am J Respir Crit Care Med. 2017;195(6):725–736. doi: 10.1164/rccm.201609-1767CI
  7. Dembinski R, Mielck F. [ARDS — an update — Part 1: Epidemiology, pathophysiology and diagnosis. (In German)]. Anasthesiol Intensivmed Notfallmed Schmerzther. 2018; 53(2):102–111. doi: 10.1055/s-0043-107166
  8. Peck TJ, Hibbert KA. Recent advances in the understanding and management of ARDS. F1000Res. 2019;8:F1000. doi: 10.12688/f1000 research.20411.1
  9. Kovacs G, Sowers N. Airway management in trauma. Emerg Med Clin North Am. 2018;36(1):61–84. doi: 10.1016/j.emc.2017.08.006
  10. El Mestoui Z, Jalalzadeh H, Giannakopoulos GF, et al. Incidence and etiology of mortality in polytrauma patients in a Dutch level I trauma center. Eur J Emerg Med. 2017; 24(1):49–54. doi: 10.1097/MEJ.0000000000000293
  11. Tarng YW, Liu YY, Huang FD, et al. The surgical stabilization of multiple rib fractures using titanium elastic nail in blunt chest trauma with acute respiratory failure. Surg Endosc. 2016;30(1):388–395. doi: 10.1007/s00464-015-4207-9
  12. Hind CR. Neurogenic respiratory failure. Handb Clin Neurol. 2013;110:295–302. doi: 10.1016/B978-0-444-52901-5.00024-1
  13. Falsaperla R, Elli M, Pavone P, et al. Noninvasive ventilation for acute respiratory distress in children with central nervous system disorders. Respir Med. 2013;107(9): 1370–1375. doi: 10.1016/j.rmed.2013.07.005
  14. Erdoğan S, Yakut K, Kalın S. Acute encephalitis and myocarditis associated with respiratory syncytial virus infections. Turk J Anaesthesiol Reanim. 2019;47(4):348–351. doi: 10.5152/TJAR.2019.52028
  15. Cassini A, Plachouras D, Eckmanns T, et al. Burden of six healthcare-associated infections on European population health: estimating incidence-based disability-adjusted life years through a population prevalence-based modelling study. PLoS Med. 2016;13(10):e1002150. doi: 10.1371/journal.pmed.1002150
  16. Arefian H, Vogel M, Kwetkat A, et al. Economic evaluation of interventions for prevention of hospital acquired infections: a systematic review. PLoS One. 2016; 11(1):e0146381. doi: 10.1371/journal.pone.0146381
  17. Walter J, Haller S, Quinten C, et al. Healthcare-associated pneumonia in acute care hospitals in European Union / European Economic Area countries: an analysis of data from a point prevalence survey, 2011 to 2012. Euro Surveill. 2018;23(32):1700843. doi: 10.2807/1560-7917.ES.2018.23.32.1700843
  18. Pillai A, Daga V, Lewis J, et al. High-flow humidified nasal oxygenation vs. standard face mask oxygenation. Anaesthesia. 2016;71(11):1280–1283. doi: 10.1111/anae.13607
  19. Huang HW, Sun XM, Shi ZH, et al. Effect of high-flow nasal cannula oxygen therapy versus conventional oxygen therapy and noninvasive ventilation on reintubation rate in adult patients after extubation: A systematic review and meta-analysis of randomized controlled trials. J Intensive Care Med. 2018;33(11):609–623. doi: 10.1177/0885066617705118
  20. Pickard K, Harris S. High flow nasal oxygen therapy. Br J Hosp Med (Lond). 2018;79(1):C13–C15. doi: 10.12968/hmed.2018.79.1.C13
  21. Bourke SC, Piraino T, Pisani L, et al. Beyond the guidelines for non-invasive ventilation in acute respiratory failure: implications for practice. Lancet Respir Med. 2018; 6(12):935–947. doi: 10.1016/S2213-2600(18)30388-6
  22. Nicolini A, Ferrando M, Solidoro P, et al. Non-invasive ventilation in acute respiratory failure of patients with obesity hypoventilation syndrome. Minerva Med. 2018;109(6 Suppl 1):1–5. doi: 10.23736/S0026-4806.18.05921-9
  23. Morley SL. Non-invasive ventilation in paediatric critical care. Paediatr Respir Rev. 2016;20:24–31. doi: 10.1016/j.prrv.2016.03.001
  24. Singer BD, Corbridge TC. Basic invasive mechanical ventilation. South Med J. 2009;102(12):1238–1245. doi: 10.1097/SMJ.0b013e3181bfac4f
  25. Jaber S, Bellani G, Blanch L, et al. The intensive care medicine research agenda for airways, invasive and noninvasive mechanical ventilation. Intensive Care Med. 2017;43(9):1352–1365. doi: 10.1007/s00134-017-4896-8
  26. Walter JM, Corbridge TC, Singer BD. Invasive mechanical ventilation. South Med J. 2018;111(12):746–753. doi: 10.14423/SMJ.0000000000000905
  27. Терек П., Калиг К. Теоретические основы высокочастотной вентиляции. Екатеринбург: АМБ, 2005. 192 с. [Terek P, Kaliq K. Theoretical foundations of high-frequency ventilation. Yekaterinburg: AMB; 2005. 192 p. (In Russ).]
  28. Любименко В.А., Мостовой А.В., Иванов С.Л. Высокочастотная искусственная вентиляция легких в неонатологии. Москва, 2002. 126 с. [Lyubimenko VA, Mostovoy AV, Ivanov SL. High-frequency artificial ventilation lung diseases in neonatology. Moscow; 2002. 126 p. (In Russ).]
  29. Putz L, Mayné A, Dincq AS. Jet ventilation during rigid bronchoscopy in adults: a focused review. Biomed Res Int. 2016;2016:4234861. doi: 10.1155/2016/4234861
  30. Fritzsche K, Osmers A. [Anesthetic management in laryngotracheal surgery. High-frequency jet ventilation as strategy for ventilation during general anesthesia. (In German)]. Anaesthesist. 2010;59(11):1051–1061; quiz 1062-3. doi: 10.1007/s00101-010-1815-6
  31. Klain M, Keszler H. High-frequency jet ventilation. Surg Clin North Am. 1985;65(4):917–930. doi: 10.1016/s0039-6109(16)43687-x
  32. Evans E, Biro P, Bedforth N. Jet ventilation. Continuing Education in Anaesthesia Critical Care & Pain. 2007;7(1): 2–5. doi: 10.1093/bjaceaccp/mkl061
  33. Goudra BG, Singh PM, Borle A, et al. Anesthesia for advanced bronchoscopic procedures: state-of-the-art review. Lung. 2015;193(4):453–465. doi: 10.1007/s00408-015-9733-7
  34. Buchan T, Walkden M, Jenkins K, et al. High-frequency jet ventilation during cryoablation of small renal tumours. Cardiovasc Intervent Radiol. 2018;41(7):1067–1073. doi: 10.1007/s00270-018-1921-4
  35. Chung DY, Tse DM, Boardman P, et al. High-frequency jet ventilation under general anesthesia facilitates CT-guided lung tumor thermal ablation compared with normal respiration under conscious analgesic sedation. J Vasc Interv Radiol. 2014;25(9):1463–1469. doi: 10.1016/j.jvir.2014.02.026
  36. Denys A, Lachenal Y, Duran R, et al. Use of high-frequency jet ventilation for percutaneous tumor ablation. Cardiovasc Intervent Radiol. 2014;37(1):140–146. doi: 10.1007/s00270-013-0620-4
  37. Raiten J, Elkassabany N, Mandel JE. The use of high-frequency jet ventilation for out of operating room anesthesia. Curr Opin Anaesthesiol. 2012;25(4):482–485. doi: 10.1097/ACO.0b013e3283554375
  38. Galmén K, Freedman J, Toporek G, et al. Clinical application of high frequency jet ventilation in stereotactic liver ablations – a methodological study. F1000Res. 2018; 7:773. doi: 10.12688/f1000research.14873.2
  39. Abderhalden S, Biro P, Hechelhammer L, et al. CT-guided navigation of percutaneous hepatic and renal radiofrequency ablation under high-frequency jet ventilation: feasibility study. J Vasc Interv Radiol. 2011;22(9): 1275–1278. doi: 10.1016/j.jvir.2011.04.013
  40. Abedini A, Kiani A, Taghavi K, et al. High-Frequency jet ventilation in nonintubated patients. Turk Thorac J. 2018; 19(3):127–131. doi: 10.5152/TurkThoracJ.2018.17025
  41. Boatta E, Jahn C, Canuet M, et al. Pulmonary arteriovenous malformations embolized using a micro vascular plug system: technical note on a preliminary experience. Cardiovasc Intervent Radiol. 2017;40(2):296–301. doi: 10.1007/s00270-016-1493-0
  42. Galmén K, Harbut P, Freedman J, et al. The use of high-frequency ventilation during general anaesthesia: an update. F1000Res. 2017;6:756. doi: 10.12688/f1000research.10823.1
  43. Boatta E, Cazzato RL, De Marini P, et al. Embolisation of pulmonary arteriovenous malformations using high-frequency jet ventilation: benefits of minimizing respiratory motion. Eur Radiol Exp. 2019;3(1):26. doi: 10.1186/s41747-019-0103-8
  44. Мороз В.В., Власенко А.В., Голубев А.М. ОРДС — патогенез и терапевтические мишени // Анестезиология и реаниматология. 2014. Т. 59, № 4. Р. 45–52. [Moroz VV, Vlasenko AV, Golubev AM. Pathogenesis and target therapy of ards. Anesthesiology and Resuscitation. 2014;59(4):45–52. (In Russ).]
  45. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–2533. doi: 10.1001/jama.2012.5669
  46. Caironi P, Carlesso E, Cressoni M, et al. Lung recruitability is better estimated according to the Berlin definition of acute respiratory distress syndrome at standard 5 cm H2O rather than higher positive end-expiratory pressure: a retrospective cohort study. Crit Care Med. 2015;43(4): 781–790. doi: 10.1097/CCM.0000000000000770
  47. Chiumello D, Brioni M. Severe hypoxemia: which strategy to choose. Crit Care. 2016;20(1):132. doi: 10.1186/s13054-016-1304-7
  48. Cherian SV, Kumar A, Akasapu K, et al. Salvage therapies for refractory hypoxemia in ARDS. Respir Med. 2018;141: 150–158. doi: 10.1016/j.rmed.2018.06.030
  49. Facchin F, Fan E. Airway pressure release ventilation and high-frequency oscillatory ventilation: potential strategies to treat severe hypoxemia and prevent ventilator-induced lung injury. Respir Care. 2015;60(10):1509–1521. doi: 10.4187/respcare.04255
  50. Sklar MC, Fan E, Goligher EC. High-Frequency oscillatory ventilation in adults with ARDS: past, present, and future. Chest. 2017;152(6):1306–1317. doi: 10.1016/j.chest.2017.06.025
  51. Klapsing P, Moerer O, Wende C, et al. High-frequency oscillatory ventilation guided by transpulmonary pressure in acute respiratory syndrome: an experimental study in pigs. Crit Care. 2018;22(1):121. doi: 10.1186/s13054-018-2028-7
  52. Young D, Lamb SE, Shah S, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368(9):806–813. doi: 10.1056/NEJMoa1215716
  53. Ferguson ND, Cook DJ, Guyatt GH, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368(9):795–805. doi: 10.1056/NEJMoa1215554
  54. Vincent JL. High-frequency oscillation in acute respiratory distress syndrome. The end of the story? Am J Respir Crit Care Med. 2017;196(6):670–671. doi: 10.1164/rccm.201703-0475ED
  55. Derdak S, Mehta S, Stewart TE, et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med. 2002;166(6):801–808. doi: 10.1164/rccm.2108052
  56. Bollen CW, van Well GT, Sherry T, et al. High frequency oscillatory ventilation compared with conventional mechanical ventilation in adult respiratory distress syndrome: a randomized controlled trial [ISRCTN24242669]. Crit Care. 2005;9(4):R430–R439. doi: 10.1186/cc3737
  57. Ng J, Ferguson ND. High-frequency oscillatory ventilation: still a role? Curr Opin Crit Care. 2017;23(2):175–179. doi: 10.1097/MCC.0000000000000387
  58. Gattinoni L, Taccone P, Carlesso E, et al. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits. Am J Respir Crit Care Med. 2013;188(11): 1286–1293. doi: 10.1164/rccm.201308-1532CI
  59. Scholten EL, Beitler JR, Prisk GK, et al. Treatment of ARDS with prone positioning. Chest. 2017;151(1):215–224. doi: 10.1016/j.chest.2016.06.032
  60. Duan EH, Adhikari NK, D’Aragon F, et al. Management of acute respiratory distress syndrome and refractory hypoxemia. a multicenter observational study. Ann Am Thorac Soc. 2017;14(12):1818–1826. doi: 10.1513/AnnalsATS.201612-1042OC
  61. Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–1116. doi: 10.1056/NEJMoa1005372
  62. Mehta C, Mehta Y. Management of refractory hypoxemia. Ann Card Anaesth. 2016;19(1):89–96. doi: 10.4103/0971-9784.173030
  63. Cherian SV, Kumar A, Akasapu K, et al. Salvage therapies for refractory hypoxemia in ARDS. Respir Med. 2018;141: 150–158. doi: 10.1016/j.rmed.2018.06.030
  64. Kunugiyama SK, Schulman CS. High-frequency percussive ventilation using the VDR-4 ventilator: an effective strategy for patients with refractory hypoxemia. AACN Adv Crit Care. 2012;23(4):370–380. doi: 10.1097/NCI.0b013e31826e9031
  65. Salim A, Martin M. High-frequency percussive ventilation. Crit Care Med. 2005;33(3 Suppl):S241–245. doi: 10.1097/01.ccm.0000155921.32083.ce
  66. Kinthala S, Liang M, Khusid F, et al. The use of high-frequency percussive ventilation for whole-lung lavage: a case report. A A Pract. 2018;11(8):205–207. doi: 10.1213/XAA.0000000000000778
  67. Gulkarov I, Schiffenhaus J, Wong I, et al. High-frequency percussive ventilation facilitates weaning from extracorporeal membrane oxygenation in adults. J Extra Corpor Technol. 2018;50(1):53–57.
  68. Godet T, Jabaudon M, Blondonnet R, et al. High frequency percussive ventilation increases alveolar recruitment in early acute respiratory distress syndrome: an experimental, physiological and CT scan study. Crit Care. 2018;22(1):3. doi: 10.1186/s13054-017-1924-6
  69. Spapen H, De Regt J, van Gorp V, Honoré PM. High-frequency percussive ventilation in acute respiratory distress syndrome: knocking at the door but can it be let in? Crit Care. 2018;22(1):55. doi: 10.1186/s13054-018-1982-4
  70. Michaels AJ, Hill JG, Sperley BP, et al. Use of HFPV for adults with ARDS: the protocolized use of high-frequency percussive ventilation for adults with acute respiratory failure treated with extracorporeal membrane oxygenation. ASAIO J. 2015;61(3):345–349. doi: 10.1097/MAT.0000000000000196
  71. Boscolo A, Peralta A, Baratto F, et al. High-frequency percussive ventilation: a new strategy for separation from extracorporeal membrane oxygenation. A A Case Rep. 2015; 4(7):79–84. doi: 10.1213/XAA.0000000000000131
  72. Wong I, Worku B, Weingarten JA, et al. High-frequency percussive ventilation in cardiac surgery patients failing mechanical conventional ventilation. Interact Cardiovasc Thorac Surg. 2017;25(6):937–941. doi: 10.1093/icvts/ivx237
  73. Korzhuk A, Afzal A, Wong I, et al. High-frequency percussive ventilation rescue therapy in morbidly obese patients failing conventional mechanical ventilation. J Intensive Care Med. 2018:885066618769596. doi: 10.1177/0885066618769596
  74. Starnes-Roubaud M, Bales EA, Williams-Resnick A, et al. High frequency percussive ventilation and low FiO(2). Burns. 2012;38(7):984–991. doi: 10.1016/j.burns.2012.05.026
  75. Carvalho I, Querido S, Silvestre J, et al. Heliox in the treatment of status asthmaticus: case reports. Rev Bras Ter Intensiva. 2016;28(1):87–91. doi: 10.5935/0103-507X.20160005
  76. Keenan LM, Hoffman TL. Refractory status asthmaticus: treatment with sevoflurane. Fed Pract. 2019;36(10):476–479.
  77. Maqsood U, Patel N. Extracorporeal membrane oxygenation (ECMO) for near-fatal asthma refractory to conventional ventilation. BMJ Case Rep. 2018;2018.bcr-2017-223276. doi: 10.1136/bcr-2017-223276
  78. Lam E, Rochani A, Kaushal G, et al. Pharmacokinetics of ketamine at dissociative doses in an adult patient with refractory status asthmaticus receiving extracorporeal membrane oxygenation therapy. Clin Ther. 2019;41(5): 994–999. doi: 10.1016/j.clinthera.2019.03005
  79. LaGrew JE, Olsen KR, Frantz A. Volatile anaesthetic for treatment of respiratory failure from status asthmaticus requiring extracorporeal membrane oxygenation. BMJ Case Rep. 2020;13(1):e231507. doi: 10.1136/bcr-2019-231507
  80. Albecker D, Bouder TG, Lewis BF. High frequency percussive ventilation as a rescue mode for refractory status asthmaticus — a case study. J Asthma. 2021;58(3):340–343. doi: 101080/02770903.2019.1687714

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Perepelitsa S.A., Kuzovlev A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».