Postural balance and cognitive functions: interaction and significance for rehabilitation (scientific review)

Cover Page

Cite item

Full Text

Abstract

The study analyses the patterns of postural-cognitive interaction and their possible application in physical rehabilitation. The morphofunctional basis of the relationship between postural balance and cognitive functions is considered, particularly the role of the vestibular system in cognitive processes and the participation of cognitive functions in the regulation of equilibrium. The interaction patterns between postural balance and cognitive functions were analyzed, including the global nature of postural-cognitive interaction, influence of multitasking, and type of motor task (static or dynamic), its complexity, novelty and variability. The review presents the prospects and advantages of the practical application of the concept of postural-cognitive interaction in physical rehabilitation. These include the use of cognitive training methods in rehabilitation programs, which, due to the positive transfer of the effect of training, improves cognitive functions and postural stability and increases the ability to perform two or more tasks, including those related to activities of daily living. Vestibular training is another promising area of practical application of interaction between cognitive functions and postural balance; accordingly, vestibular–cognitive interaction contributes to the improvement of cognitive status. Considering the social significance of neurocognitive disorders and the importance of their early diagnosis, issues related to the identification of objective correlates and predictors of cognitive decline, particularly the basic spatial and spatiotemporal parameters of static posturography and stabilometric indices, are taken into account.

About the authors

Yu. P. Zverev

Lobachevsky State University of Nizhni Novgorod

Email: yzverev@yahoo.com
ORCID iD: 0000-0003-4477-748X
SPIN-code: 1793-4555

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, 23 Gagarin avenue, 603950 Nizhni Novgorod

T. V. Builova

Lobachevsky State University of Nizhni Novgorod; Privolzhsky Research Medical University

Email: tvbuilova@list.ru
ORCID iD: 0000-0003-0282-7207
SPIN-code: 6062-2584

MD, Dr. Sci. (Med.), Professor

Russian Federation, Nizhni Novgorod; Nizhni Novgorod

А. A. Tulichev

Privolzhsky Research Medical University

Author for correspondence.
Email: mr.tulichev@mail.ru
ORCID iD: 0000-0002-3157-2218
SPIN-code: 9647-5272

MD, Cand. Sci. (Med.)

Russian Federation, Nizhni Novgorod

References

  1. Xiao T, Yang L, Smith L, et al. Correlation between cognition and balance among middle-aged and older adults observed through a tai chi intervention program. Front Psychol. 2020;(11):668. doi: 10.3389/fpsyg.2020.00668
  2. Bazanova OM, Kovaleva AV. Psychophysiological indicators of postural control. Contribution of the Russian scientific school. Part I. Human Physiol. 2022;48(2):113–136. EDN: KGLQBE doi: 10.31857/S0131164622020023
  3. Horak FB. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing. 2006;35(Suppl 2):ii7–ii11. EDN: IKEUWF doi: 10.1093/ageing/afl077
  4. Stephan DN, Hensen S, Fintor E, et al. Influences of postural control on cognitive control in task switching. Front Psychol. 2018;(9):1153. doi: 10.3389/fpsyg.2018.01153
  5. Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: A review of an emerging area of research. Gait Posture. 2002;16(1):1–14. doi: 10.1016/S0966-6362(01)00156-4
  6. Parfenov VA, Zakharov VV, Preobrazhenskaya IS. Cognitive disorders. Moscow: Remedium; 2014.192 р. (In Russ).
  7. Horak FB, Nashner LM. Central programming of posture control: Adaptation to altered support surface configurations. J Neurophysiol. 1986;55(6):1369–1381. doi: 10.1152/jn.1986.55.6.1369
  8. Ivanova GE, Skvortsov DV, Klimov LV. Postural function evaluation in clinical practice. Bulletin Rehabilitat Med. 2014;(1): 19–25. EDN: SPLBTF
  9. Gazhe PM, Veber B. Posturology. Regulation and disorders of human body equilibrium. Saint Petersburg: Publishing House St. Petersburg Medical Academy of Postgraduate Education; 2008. 314 p. (In Russ).
  10. Cognitive disorders in the elderly and senile: clinical recommendations. Moscow: Pero Publishing House; 2021. 344 p. (In Russ).
  11. Kiely KM. Cognitive function. In: A.C. Michalos, editor. Encyclopedia of quality of life and well-being research. Dordrecht: Springer; 2014. Р. 974–978. doi: 1007/978-94-007-0753-5_426
  12. Diagnostic and statistical manual of mental diseases. ed. (DSM-V). London: American Psychiatric Association; 2013. 947 р.
  13. Diamond А. Executive functions. Ann Rev Psychol. 2013;(64): 135–168. doi: 10.1146/annurev-psych-113011-143750
  14. International Classification of Functioning, Disability and Health: ICF [Internet resource]. Geneva: World Health Organisation; 2001. 351 р. (In Russ). Available from: https://skssrc.ru/files/2022/mkf.pdf. Accessed: 15.01.2024.
  15. Solovyova AP, Goryachev DV, Arkhipov VV. Criteria for assessing cognitive impairment in clinical trials. Bulletin Sci Center Examinat Med Products. 2018;8(4):218–230. EDN: YQDKHR doi: 10.30895/1991-2919-2018-8-4-218-230
  16. Van der Fels IM, Wierike SC, Hartman Е, et al. The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. J Sci Med Sport. 2015;18(6):697–703. doi: 10.1016/j.jsams.2014.09.007
  17. Anderson V, Anderson P, Northam E, et al. Development of executive functions through late childhood and adolescence: An Australian sample. Dev Neuropsychol. 2001;20(1):385–406. doi: 10.1207/S15326942DN2001_5
  18. Roebers CM, Kauer M. Motor and cognitive control in a normative sample of 7-year-olds. Dev Sci. 2009;12(1):175–181. doi: 10.1111/j.1467-7687.2008.00755.x
  19. Bigelow RT, Agrawal Y. Vestibular involvement in cognition: Visuospatialability, attention, executive function, and memory. J Vestib Res. 2015;25(2):73–89. EDN: UWTAIF doi: 10.3233/VES-150544
  20. Dobbels B, Peetermans O, Boon B, et al. Impact of bilateral vestibulopathy on spatial and nonspatial cognition: A systematic review. Ear Hear. 2019;40(4):757–765. EDN: ORGLJZ doi: 10.1097/AUD.0000000000000679
  21. Mast FW, Preuss N, Hartmann M, Grabherr L. Spatial cognition, body representation and affective processes: The role of vestibular information beyond ocular reflexes and control of posture. Front Integr Neurosci. 2014;27(8):44. EDN: VJFCRF doi: 10.3389/fnint.2014.00044
  22. Agrawal Y, Smith PF, Rosenberg PB. Vestibular impairment, cognitive decline and Alzheimer’s disease: Balancing the evidence. Aging Ment Health. 2020;24(5):705–708. doi: 10.1080/13607863.2019.1566813
  23. Ventre-Dominey J. Vestibular function in the temporal and parietal cortex: Distinct velocity and inertial processing pathways. Front Integr Neurosci. 2014;(8):53. doi: 10.3389/fnint.2014.00053
  24. Gresty MA, Golding JF. Impact of vertigo and spatial disorientation on concurrent cognitive tasks. Ann NY Acad Sci. 2009;(1164): 263–267. doi: 10.1111/j.1749-6632.2008.03744.x
  25. Hüfner K, Stephan T, Hamilton DA, et al. Gray-matter atrophy after chronic complete unilateral vestibular deafferentation. Ann NY Acad Sci. 2009;(1164):383–385. doi: 10.1111/j.1749-6632.2008.03719.x
  26. Kamil RJ, Jacob A, Ratnanather JT, et al. Vestibular function and hippocampal volume in the Вaltimore longitudinal study of aging (BLSA). Otol Neurotol. 2018;39(6):765–771. doi: 10.1097/MAO.0000000000001838
  27. Lazarov O, Hollands C. Hippocampal neurogenesis: Learning to remember. Prog Neurobiol. 2016;(138–140):1–18. doi: 10.1016/j.pneurobio.2015.12.006
  28. Tighilet B, Chabbert C. Adult neurogenesis promotes balance recovery after vestibular loss. Prog Neurobiol. 2019;(174):28–35. doi: 10.1016/j.pneurobio.2019.01.001
  29. Suzuki Y, Tsubaki T, Nakaya K, et al. New balance capability index as a screening tool for mild cognitive impairment. BMC Geriatrics. 2023;23(1):74. EDN: IPNXXV doi: 10.1186/s12877-023-03777-6
  30. Rizzato A, Paoli A, Andretta M, et al. Are static and dynamic postural balance assessments two sides of the same coin? A cross-sectional study in the older adults. Front Physiol. 2021;(12):681370. doi: 10.3389/fphys.2021.681370
  31. McIsaac TL, Lamberg EM, Muratori LM. Building a framework for a dual task taxonomy. BioMed Res Int. 2015;2015:591475. doi: 10.1155/2015/591475
  32. Tombu M, Jolicoeur PA. Central capacity sharing model of dual-task performance. J Exp Psychol Hum Percept Perform. 2003;29(1): 3–18. EDN: GXKDQL doi: 10.1037//0096-1523.29.1.3
  33. Borel L, Alescio-Lautier B. Posture and cognition in the elderly: Interaction and contribution to the rehabilitation strategies. Neurophysiol Clin. 2014;44(1):95–107. doi: 10.1016/j.neucli.2013.10.129
  34. Divandari N, Bird ML, Vakili M, Jaberzadeh S. The association between cognitive domains and postural balance among healthy older adults: A systematic review of literature and meta-analysis. Curr Neurol Neurosci Rep. 2023;23(11):681–693. EDN: WFFPPN doi: 10.1007/s11910-023-01305-y
  35. Demnitz N, Patrick E, Helen D, аt al. A systematic review and meta-analysis of cross-sectional studies examining the relationship between mobility and cognition in healthy older adults. Gait Posture. 2016;(50):164–174. doi: 10.1016/j.gaitpost.2016.08.028
  36. Stuhr C, Hughes CM, Stöckel T. Task-specific and variability driven activation of cognitive control processes during motor performance. Sci Rep. 2018;8(1):10811. EDN: YJECQH doi: 10.1038/s41598-018-29007-3
  37. Best JR. Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Dev Rev. 2010;30(4):331–351. doi: 10.1016/j.dr.2010.08.001
  38. Rosano C, Simonsick EM, Harris TB, et al. Association between physical function and cognitive function in healthy elderly: The health, aging and body composition study. Neuroepidemiology. 2005; 24(1-2):8–14. doi: 10.1159/000081043
  39. Heaw YC, Singh DK, Tan MP, Kumar S. Bidirectional association between executive and physical functions among older adults: A systematic review. Austral J Ageing. 2022;41(1):20–41. doi: 10.1111/ajag.13008
  40. Stöckel T, Wunsch K, Hughes CM. Age-related decline in anticipatory motor planning and its relation to cognitive and motor skill proficiency. Front Aging Neurosci. 2017;(9):283. doi: 10.3389/fnagi.2017.00283
  41. Bayot M, Dujardin K, Tard C, et al. The interaction between cognition and motor control: A theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning. Neurophysiol Clin. 2018;48(6):361–375. doi: 10.1016/j.neucli.2018.10.003
  42. Chein JM, Schneider W. Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain general control network for learning. Cogn Brain Res. 2005;25(3):607–623. doi: 10.1016/j.cogbrainres.2005.08.013
  43. Winter DA. Biomechanics and motor control of human movement. 4th ed. New York: John Wiley; 2009. 384 р.
  44. Muehlbauer T, Besemer C, Wehrle A, et al. Relationship between strength, power and balance performance in seniors. Gerontology. 2012;58(6):504–512. doi: 10.1159/000341614
  45. Takakusaki K, Takahashi M, Obara K, Chiba R. Neural substrates involved in the control of posture. Adv Robot. 2016;31(1-2):2–23. doi: 10.1080/01691864. 2016.1252690
  46. Morasso P, Cherif A, Zenzeri J. Quiet standing: the single inverted pendulum model is not so bad after all. PLoS One. 2019;14(3):e0213870. doi: 10.1371/journal.pone.0213870
  47. Surgent OJ, Dadalko OI, Pickett KA, Travers BG. Balance and the brain: A review of structural brain correlates of postural balance and balance training in humans. Gait Posture. 2019;(71):245–252. doi: 10.1016/j.gaitpost.2019.05.011
  48. Bolton DA. The role of the cerebral cortex in postural responses to externally induced perturbations. Neurosci Biobehav Rev. 2015;(57):142–155. EDN: VGEUIZ doi: 10.1016/j.neubiorev.2015.08.014
  49. Edwards AE, Guven O, Furman MD, et al. Electroencephalographic correlates of continuous postural tasks of increasing difficulty. Neuroscience. 2018;(395):35–48. EDN: PUTJGV doi: 10.1016/j.neuroscience.2018.10.040
  50. Borella E, Carretti B, Ribo F, De Beni R. Working memory training in older adults: Evidence of transfer and maintenance effects. Psychol Aging. 2010;25(4):767–778. doi: 10.1037/a0020683
  51. Levine B, Stuss DT, Winocur G, et al. Cognitive rehabilitation in the elderly: Effects on strategic behaviour in relation to goal management. J Int Neuropsychol Soc. 2007;13(1):143–152. EDN: HWGCIT doi: 10.1017/S1355617707070178
  52. Bherer L, Kramer AF, Peterson MS, et al. Transfer effects in task-set cost and dual-task cost after dual-task training in older and younger adults: Further evidence for cognitive plasticity in attentional control in late adulthood. Exp Aging Res. 2008;34(3): 188–219. doi: 10.1080/03610730802070068
  53. Rogge AK, Röder B, Zech A, et al. Balance training improves memory and spatial cognition in healthy adults. Sci Rep. 2017;7(1):572. doi: 10.1038/s41598-017-06071-9
  54. Chapman SB, Aslan S, Spence JS, et al. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front Aging Neurosci. 2013;(5):75. doi: 10.3389/fnagi.2013.00075
  55. Young J, Angevare M, Rusted J, Tabet N. Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2015;2015(4):CD005381. doi: 10.1002/14651858.CD005381.pub4
  56. Gholami M, Salari Z, Yarahmadi R, et al. Effects of balance training on cognitive function and activities of daily living in older adult patients with heart failure: A randomized controlled trial. Ir J Med Sci. 2023;193(1):111–121. EDN: NDFSDD doi: 10.1007/s11845-023-03436-0
  57. Smith PF, Darlington CL, Zheng Y. Move it or lose it: Is stimulation of the vestibular system necessary for normal spatial memory? Hippocampus. 2010;20(1):36–43. doi: 10.1002/hipo.20588
  58. Angelaki DE, Cullen KE. Vestibular system: The many facets of a multimodal sense. Ann Rev Neurosci. 2008;(31):125–150. doi: 10.1146/annurev.neuro.31.060407.125555
  59. Bahureksa L, Najafi B, Saleh A, et al. The impact of mild cognitive impairment on gait and balance: A systematic review and meta-analysis of studies using instrumented assessment. Gerontology. 2017;63(1):67–83. doi: 10.1159/000445831
  60. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet. 2020;396(10248):413–446. EDN: VAADCC doi: 10.1016/S0140-6736(20)30367-6
  61. Mullard A. FDA approval for Biogen’s aducanumab sparks Alzheimer disease firestorm. Nat Rev Drug Discov. 2021;20(7):496. doi: 10.1038/d41573-021-00099-3
  62. Leandri M, Cammisuli S, Cammarata S, et al. Balance features in Аlzheimer’s disease and amnestic mild cognitive impairment. J Alzheimer’s Dis. 2009;16(1):113–120. doi: 10.3233/JAD-2009-0928
  63. Alsubaie SF. the postural stability measures most related to aging, physical performance, and cognitive function in healthy adults. BioMed Res Int. 2020;2020:5301534. doi: 10.1155/2020/5301534
  64. Johansson J, Nordström A, Gustafson Y, et al. Increased postural sway during quiet stance as a risk factor for prospective falls in community-dwelling elderly individuals. Age Ageing. 2017;46(6): 964–970. doi: 10.1093/ageing/afx083
  65. Lindsay B, Najafi В, Saleh А, et al. The impact of mild cognitive impairment on gait and balance: A systematic review and meta-analysis of studies using instrumented assessment. Gerontology. 2017;63(1):67–83. doi: 10.1159/000445831
  66. Quialheiro A, Thaynara M, Zimermann TA, et al. Stabilometric analysis as a cognitive function predictor in adults over the age of 50: A cross-sectional study conducted in a memory clinic. J Bodyw Mov Ther. 2021;(27):640–646. doi: 10.1016/j.jbmt.2021.04.007
  67. Kuan YC, Huang LK, Wang YH, et al. Balance and gait performance in older adults with early-stage cognitive impairment. Eur J Phys Rehabil Med. 2021;57(4):560–567. doi: 10.23736/S1973-9087.20.06550-8
  68. Deary IJ, Whalley LJ, Batty GD, Starr JM. Physical fitness and lifetime cognitive change. Neurology. 2006;67(7):1195–2000. doi: 10.1212/01.wnl.0000238520.06958.6a

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».