An outlook of early rehabilitation of stroke patients using VR technologies
- Authors: Petrova M.V.1, Ryzhova O.V.1, Cheboksarov D.V.1, Saenko I.V.2, Sueva V.S.3, Petrikov S.S.3
-
Affiliations:
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
- Institute of Biomedical Problems of the Russian Academy of Sciences
- N.V. Sklifosovsky Research Institute for Emergency Medicine
- Issue: Vol 5, No 2 (2023)
- Pages: 157-166
- Section: REVIEWS
- URL: https://journals.rcsi.science/2658-6843/article/view/132878
- DOI: https://doi.org/10.36425/rehab405659
- ID: 132878
Cite item
Full Text
Abstract
Among all the latest technologies, virtual reality (virtual reality, VR) can be a powerful and promising tool for achieving the main goals of rehabilitation. It has been experimentally proven that rehabilitation based on virtual technologies is able to recreate a realistic perception and corresponding reaction in a patient, thereby improving the quality of cognitive and motor rehabilitation with the least cost. However, the success of such rehabilitation depends mainly on the technologies and techniques used by doctors.
This study is devoted to the important problem — application of virtual reality technologies in patients with acute impairment of cerebral circulation at the stage of early rehabilitation. We focus on the neurophysiological aspects of the VR technology application and the mechanisms of the brain’s neuroplasticity during application of virtual reality. The characteristic features of modern approaches to application of virtual reality are highlighted. Also, a novel concept is proposed for the modern VR-technology application in intensive care unit patients. In conclusion, we discuss the possibilities of VR-technologies application, allowing for the simulation of any situation, as well as a possibility of synchronous playback of a music track with walking simulation in ICU patients in the acute period of stroke at the stage of early rehabilitation.
Full Text
##article.viewOnOriginalSite##About the authors
Marina V. Petrova
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Email: mail@petrovamv.ru
ORCID iD: 0000-0003-4272-0957
SPIN-code: 9132-4190
MD, Dr. Sci. (Med.), Professor
Russian Federation, 777/1 Lytkino, 141534 Moscow regionOlga V. Ryzhova
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Author for correspondence.
Email: dr.origa@gmail.com
ORCID iD: 0000-0001-7461-4222
SPIN-code: 8980-4019
junior researcher
Russian Federation, 777/1 Lytkino, 141534 Moscow regionDmitrii V. Cheboksarov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Email: dcheboksarov@gmail.com
ORCID iD: 0000-0001-9462-6423
SPIN-code: 2056-9908
Scopus Author ID: 56741338900
ResearcherId: O-9579-2015
MD, Cand. Sci. (Med.)
Russian Federation, 777/1 Lytkino, 141534 Moscow regionIrina V. Saenko
Institute of Biomedical Problems of the Russian Academy of Sciences
Email: isayenko@mail.ru
MD, Cand. Sci. (Med.)
Russian Federation, MoscowVictoria S. Sueva
N.V. Sklifosovsky Research Institute for Emergency Medicine
Email: victoriasueva@gmail.com
MD, Cand. Sci. (Med.)
Russian Federation, MoscowSergey S. Petrikov
N.V. Sklifosovsky Research Institute for Emergency Medicine
Email: petrikovss@sklif.mos.ru
ORCID iD: 0000-0003-3292-8789
SPIN-code: 7873-3673
MD, Dr. Sci. (Med.), Corresponding Member of the Russian Academy of Sciences
Russian Federation, MoscowReferences
- Iosa M, Morone G, Fusco A, et al. Seven capital devices for the future of stroke rehabilitation. Stroke Res Treat. 2012;2012:187965. doi: 10.1155/2012/187965
- Morone G, Paolucci S, Mattia D, et al. The 3Ts of the new millennium neurorehabilitation gym: Therapy, technology, translationality. Expert Rev Med Devices. 2016;13(9):785–787. doi: 10.1080/17434440.2016.1218275
- Laver KE, Lange B, George S, et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11(11):CD008349. doi: 10.1002/14651858.CD008349.pub4
- Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225–S239. doi: 10.1044/1092-4388(2008/018)
- Kim YM, Yun GJ, Song YJ, Young HE. The effect of virtual reality training on unilateral spatial neglect in stroke patients. Ann Rehabilitation Med. 2011;35(3):309–315. doi: 10.5535/arm.2011.35.3.309
- De Luca R, Buono VL, Leo A, et al. Use of virtual reality in improving poststroke neglect: Promising neuropsychological and neurophysiological findings from a case study. Appl Neuropsychol Adult. 2017;26(1):96–100. doi: 10.1080/23279095.2017.1363040
- CalabrJ RS, Naro A, Russo M, et al. The role of virtual reality in improving motor performance as revealed by EEG: A randomized clinical trial. J Neuroeng Rehabil. 2017;14(1):53. doi: 10.1186/s12984-017-0268-4
- Russo M, de Luca R, Naro A, et al. Does body shadow improve the efficacy of virtual reality-based training with BTS NIRVANA? A pilot study. Medicine (Baltimore). 2017;96(38):e8096. doi: 10.1097/MD.0000000000008096
- Sofroniew NJ, Vlasov YA, Hires SA, et al. Neural coding in barrel cortex during whisker-guided locomotion. Elife. 2015;(4):e12559. doi: 10.7554/eLife.12559
- Bagce HF, Saleh S, Adamovich SV, Tunik E. Visuomotor gain distortion alters online motor performance and enhances primary motor cortex excitability in patients with stroke. Neuromodulation. 2012;15(4):361Y366. doi: 10.1111/j.1525-1403.2012.00467.x
- Billinhurst M, Weghorst S. The use of sketch maps to measure cognitive maps virtual of environments. In: Conference: Virtual Reality Annual International Symposium (VRAIS ‘95). University of Washington, Seattle, WA; 1995. doi: 10.1109/VRAIS.1995.512478
- Witmer BG, Singer MJ. Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators Virtual Environments. 1998;7(3):225–240.
- Slater M, Usoh M. Representations systems, perceptual position, and presence in virtual environments. Presence: Teleoperators Virtual Environments. 1993;2(3):221–233. doi: 10.1162/pres.1993.2.3.221
- Palmer SE, Schloss KB. An ecological valence theory of human color preference. Proceedings National Academy Sci. 2010; 107(19):8877–8882. doi: 10.1073/pnas.0906172107
- Franklin A, Bevis L, Ling Y, Hurlbert A. Biological components of colour preference in infancy. Developmental Sci. 2009;13(2):346–354. doi: 10.1111/j.1467-7687.2009.00884.x
- Racey C, Franklin A, Bird CM. The processing of color preference in the brain. NeuroImage. 2019;(191):529–536. doi: 10.1016/j.neuroimage.2019.02.041
- Ikeda T, Matsuyoshi D, Sawamoto N, et al. Color harmony represented by activity in the medial orbitofrontal cortex and amygdala. Front Hum Neurosci. 2015;(9):382. doi: 10.3389/fnhum.2015.00382
- Johnson SC, Schmitz TW, Kawahara-Baccus TN, et al. The cerebral response during subjective choice with and without self-reference. J Cognitive Neurosci. 2005;17(12):1897–1906. doi: 10.1162/089892905775008607
- Anatomy 3D atlas. Learn human anatomy in 3D [Internet]. Available from: https://anatomy3datlas.com. Accessed: 15.04.2023.
- Liu Y, Li M, Zhang X, et al. Hierarchical representation for chromatic processing across macaque V1, V2, and V4. Neuron. 2020;108(3):538–550.e5. doi: 10.1016/j.neuron.2020.07.037
- Raichle ME. The brain’s default mode network. Ann Rev Neurosci. 2015;38(1):433–447. doi: 10.1146/annurev-neuro-071013-014030
- Smallwood J, Bernhardt BC, Leech R. The default mode network in cognition: A topographical perspective. Nature Rev Neurosci. 2021;22(8):503–513. doi: 10.1038/s41583-021-00474-4
- Novikova KV. Psychological correction of the neuropsychic state of people who have suffered a stroke in a sensory room. Psychologist. 2021;(2):1–19. (In Russ). doi: 10.25136/2409-8701.2021.2.35461
- Schumacher GI, Eliseev VV, Bykadorov AV. The use of chromotherapy in persons engaged in intensive mental labor. Saratov Sci Med J. 2012;8(2):567–570. (In Russ).
- Thaut MH. Rhythm, music and the brain: Scientific foundations and clinical applications. New York: Routledge; 2005. 247 р.
- Leins AK, Spintge R, Thaut M. Music therapy in medical and neurological rehabilitation settings. In: Hallam S, Cross I, Thaut M, ed. The Oxford handbook of music psychology. Oxford, New York: Oxford University Press; 2011. P. 526–536.
- Altenmüller E, Schlaug G. Neurologic music therapy: The beneficial effects of music making on neurorehabilitation. Acoust Sci Technol. 2013;34(1):5–12. doi: 10.1250/ast.34.5
- Tomaino CM. Music and limbic system. In: Bejjani F, ed. Current research in arts and medicine. Chicago: A Capella Books; 1993. Р. 393–398.
- Schlaug G. Music, musicians, and brain plasticity. In: Hallam S, Cross I, Thaut M, ed. The Oxford handbook of music psychology. Oxford, New York: Oxford University Press; 2011. Р. 197–207.
- Blood AJ, Zatorre RJ. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci USA. 2001;98(20):11818–11823. doi: 10.1073/pnas.191355898
- Brown S, Martinez MJ, Parsons LM. Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport. 2004;15(13):2033–2037. doi: 10.1097/00001756-200409150-00008
- Menon V, Levitin DJ. The rewards of music listening: Response and physiological connectivity of the mesolimbic system. Neuroimage. 2005;28(1):175–184. doi: 10.1016/j.neuroimage.2005.05.053
- Koelsch S, Fritz TV, Cramon DY, et al. Investigating emotion with music: An fMRI study. Hum Brain Mapp. 2006;27(3):239–250. doi: 10.1002/hbm.20180
- Ashby FG, Isen AM, Turken AU. A neuropsychological theory of positive affect and its influence on cognition. Psychol Rev. 1999;106(3):529–550. doi: 10.1037/0033-295x.106.3.529
- Janata P, Tillmann B, Bharucha JJ. Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn Affect Behav Neurosci. 2002;2(2):121–140. doi: 10.3758/cabn.2.2.121
- Peretz I, Zatorre RJ. Brain organization for music processing. Annu Rev Psychol. 2005;(56):89–114. doi: 10.1146/annurev.psych.56.091103.070225
- Thompson WF, Schellenberg EG, Husain G. Arousal, mood, and the Mozart effect. Psychol Sci. 2001;12(3):248–251. doi: 10.1111/1467-9280.00345
- Schellenberg EG, Nakata T, Hunter PG, Tamoto S. Exposure to music and cognitive performance: Tests of children and adults. Psychol Music. 2007;35(1):5–19. doi: 10.1177/0305735607068885
- Thompson RG, Moulin CJ, Hayre S, Jones RW. Music enhances category fluency in healthy older adults and Alzheimer’s disease patients. Exp Aging Res. 2005;31(1):91–99. doi: 10.1080/03610730590882819
- Foster NA, Valentine ER. The effect of auditory stimulation on autobiographical recall in dementia. Exp Aging Res. 2001;27(3): 215–228. doi: 10.1080/036107301300208664
- Hommel M, Peres B, Pollak P, et al. Effects of passive tactile and auditory stimuli on left visual neglect. Arch Neurol. 1990;47(5): 573–576. doi: 10.1001/archneur.1990.00530050097018
- Sarkamo T, Tervaniemi M, Laitinen S, et al. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain. 2008;131(3):866–876. doi: 10.1093/brain/awn013
- Racette A, Bard C, Peretz I. Making non-fluent aphasics speak: Sing along! Brain. 2006;129(Pt 10):2571–2584. doi: 10.1093/brain/awl250
- Callan DE, Tsytsarev V, Hanakawa T, et al. Song and speech: Brain regions involved with perception and covert production. Neuroimage. 2006;31(3):1327–1342. doi: 10.1016/j.neuroimage.2006.01.036
- Dé monet JF, Thierry G, Cardebat D. Renewal of the neurophysiology of language: Functional neuroimaging. Physiol Rev. 2005;85(1):49–95. doi: 10.1152/physrev.00049.2003
- Witte OW. Lesion-induced plasticity as a potential mechanism for recovery and rehabilitative training. Curr Opin Neurol. 1998;11(6): 655–662. doi: 10.1097/00019052-199812000-00008
- Kreisel SH, Bazner H, Hennerici MG. Pathophysiology of stroke rehabilitation: Temporal aspects of neuro-functional recovery. Cerebrovasc Dis. 2006;21(1-2):6–17. doi: 10.1159/000089588
- Engineer ND, Percaccio CR, Pandya PK, et al. Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons. J Neurophysiol. 2004;92(1):73–82. doi: 10.1152/jn.00059.2004
- Chikahisa S, Sei H, Morishima M, et al. Exposure to music in the perinatal period enhances learning performance and alters BDNF/TrkB signaling in mice as adults. Behav Brain Res. 2006;169(2):312–319. doi: 10.1016/j.bbr.2006.01.021
- Kim H, Lee MH, Chang HK, et al. Influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats. Brain Dev. 2006;28(2):109–114. doi: 10.1016/j.braindev.2005.05.008
- Angelucci F, Ricci E, Padua L, et al. Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus. Neurosci Lett. 2007; 429(2-3):152–155. doi: 10.1016/j.neulet.2007.10.005
- Xu F, Cai R, Xu J, et al. Early music exposure modifies GluR2 protein expression in rat auditory cortex and anterior cingulate cortex. Neurosci Lett. 2007;420(2):179–183. doi: 10.1016/j.neulet.2007.05.005
- Angelucci F, Fiore M, Ricci E, et al. Investigating the neurobiology of music: Brain-derived neurotrophic factor modulation in the hippocampus of young adult mice. Behav Pharmacol. 2007; 18(5-6):491–496. doi: 10.1097/FBP.0b013e3282d28f50
- Centonze D, Rossi S, Tortiglione A, et al. Synaptic plasticity during recovery from permanent occlusion of the middle cerebral artery. Neurobiol Dis. 2007;27(1):44–53. doi: 10.1016/j.nbd.2007.03.012
- Schabitz WR, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007;38(7): 2165–2172. doi: 10.1161/STROKEAHA.106.477331.
Supplementary files
