Mechanisms of low-temperature rehabilitation technologies. Natural and artificial hypothermia
- Authors: Shevelev O.A.1,2, Petrova M.V.1,2, Mengistu E.M.1,2, Yakimenko V.A.2, Menzhurenkova D.N.2, Kolbaskina I.N.1, Zhdanova M.A.1, Khodorovich N.A.2, Sheveleva E.O.2
-
Affiliations:
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
- Peoples' Friendship University of Russia
- Issue: Vol 5, No 2 (2023)
- Pages: 141-156
- Section: REVIEWS
- URL: https://journals.rcsi.science/2658-6843/article/view/132877
- DOI: https://doi.org/10.36425/rehab345206
- ID: 132877
Cite item
Full Text
Abstract
The literature review covers an analysis of the typical protective and adaptive reaction mechanisms that develop in small rodents that spontaneously hibernate under the cold snap, together with warm-blooded animals and humans during circadian fall of the body temperature at night time and in a course of a slow-wave sleep, along with induced artificial therapeutic hypothermia.
The general features of neuroprotection states development in natural endogenous and induced hypothermia are highlighted, which include metabolic, epigenetic and biophysical reactions that ensure the formation of nonspecific tolerance of the brain to potentially damaging effects. Significant attention has been devoted to the participation of hibernation proteins, opioids and antioxidant systems in the processes of safe exit from state of torpor in animals and in implementation of sleep restoration functions. Taking into account the circadian nature formation of endogenous brain’s hypothermia at night and in the phases of slow sleep, it is suggested that periodic temperature exposure on the cerebral cortex can be applied in order to restore the disturbed circadian rhythms. From the standpoint of common mechanisms of endogenous and induced hypothermia, selective hypothermia of the cerebral cortex can be considered as a nature-like technology.
Based on the extensive experimental material indicating a significant neuroprotective potentials of low temperatures during hibernation, diurnal hypothermia as well as artificially induced hypothermia, it was stated that implementation of the technology for selective hypothermia of the cerebral cortex in order to prevent the negative consequences of cerebral catastrophes are a perspective trend.
Full Text
##article.viewOnOriginalSite##About the authors
Oleg A. Shevelev
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; Peoples' Friendship University of Russia
Author for correspondence.
Email: shevelev_o@mail.ru
ORCID iD: 0000-0002-6204-1110
SPIN-code: 9845-2960
MD, Dr. Sci. (Med.), Professor
Russian Federation, 25/2 Petrovka street,107031 Moscow; 6, st. Miklukho-Maclay, MoscowMarina V. Petrova
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; Peoples' Friendship University of Russia
Email: mpetrova@fnkcrr.ru
ORCID iD: 0000-0003-4272-0957
SPIN-code: 9132-4190
MD, Dr. Sci. (Med.)
Russian Federation, 25/2 Petrovka street,107031 Moscow; 6, st. Miklukho-Maclay, MoscowElias M. Mengistu
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; Peoples' Friendship University of Russia
Email: drmengistu@mail.ru
ORCID iD: 0000-0002-6928-2320
SPIN-code: 1387-7508
Russian Federation, 25/2 Petrovka street,107031 Moscow; 6, st. Miklukho-Maclay, Moscow
Vladislav A. Yakimenko
Peoples' Friendship University of Russia
Email: Yavladislav87@gmail.com
ORCID iD: 0000-0003-2308-6313
SPIN-code: 3572-7563
Russian Federation, Moscow
Darina N. Menzhurenkova
Peoples' Friendship University of Russia
Email: pechenki2013@mail.ru
ORCID iD: 0009-0002-7997-0079
Russian Federation, Moscow
Irina N. Kolbaskina
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Email: kolbaskinairinka@mail.ru
ORCID iD: 0009-0000-2804-8952
Russian Federation, 25/2 Petrovka street,107031 Moscow
Maria A. Zhdanova
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Email: mchubarova@fnkcrr.ru
ORCID iD: 0000-0001-6550-4777
SPIN-code: 4514-3020
Russian Federation, 25/2 Petrovka street,107031 Moscow
Nadezhda A. Khodorovich
Peoples' Friendship University of Russia
Email: khodorovich_na@rudn.university
ORCID iD: 0000-0002-1289-4545
SPIN-code: 6237-9153
MD, Dr. Sci. (Med.), Professor
Russian Federation, MoscowEkaterina O. Sheveleva
Peoples' Friendship University of Russia
Email: sheveleva_eo@rudn.university
ORCID iD: 0000-0002-7024-8875
SPIN-code: 2593-2995
MD, Cand. Sci. (Med.)
Russian Federation, MoscowReferences
- Molchanov YuA, Fedoseeva SA. The influence of cold climate on the origin and evolution of mankind. Nauka i tekhnika v Yakutii. 2015;(1):69–75. (In Russ).
- Noyes AM, Lundbye JB. Managing the complications of mild therapeutic hypothermia in the cardiac arrest patient. Intensive Care Med. 2015;30(5):259–269. doi: 10.1177/0885066613516416
- Evans AL, Singh NJ, Friebe A, et al. Drivers of hibernation in the brown bear. Front Zool. 2016;(13):7. doi: 10.1186/s12983-016-0140-6
- Geiser F. Seasonal expression of avian and mammalian daily torpor and hibernation: Not a simple summer-winter affair. Front Physiol. 2020;(11):436. doi: 10.3389/fphys.2020.00436
- Jansen HT, Leise T, Stenhouse G, et al. The bear circadian clock does not “sleep” during winter dormancy. Front Zool. 2016;(13):42. doi: 10.1186/s12983-016-0173-x
- Van Breukelen F, Martin S. Reversible depression of transcription during hibernation. J Comp Physiol B. 2002;172(5):355–361. doi: 10.1007/s00360-002-0256-1
- Geiser F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol. 2004;(66):239–274. doi: 10.1146/annurev.physiol.66.032102.115105
- Heldmaier G, Ortmann S, Elvert R. Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol. 2004;141(3):317–329. doi: 10.1016/j.resp.2004.03.014
- Buck CL, Barnes BM. Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Physiol Regulatory Integrative Comp Physiol. 2000;279(1):255–262. doi: 10.1152/ajpregu.2000.279.1.R255
- Carey HV, Andrews MT, Martin SL. Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev. 2003;83(4):1153–1181. doi: 10.1152/physrev.00008.2003
- Dave KR, Christian SL, Perez-Pinzon MA, Drew KL. Neuroprotection: Lessons from hibernators. Comp Biochem Physiol. 2012;162(1-3):1–9. doi: 10.1016/j.cbpb.2012.01.008
- Bouma HR, Carey HV, Kroese FG. Hibernation: The immune system at rest? J Leukocyte Biology. 2010;88(4):619–624. doi: 10.1189/jlb.0310174
- Shavlakadze T, Grounds MD. Of bears, frogs, meat, mice and men: Insight into the complexity of factors affecting skeletal muscle atrophy/hypertrophy and myogenesis/adipogenesis. Bio Essays. 2006;28(10):994–1009. doi: 10.1002/bies.20479
- Eddy SF, Storey KB. p38 MAPK regulation of transcription factor targets in muscle and heart of hibernating bats, Myotis lucifugus. Cell Biochem Function. 2007;25(6):759–765. doi: 10.1002/cbf.1416
- Nelson BT, Ding X, Boney-Montoya J, et al. Metabolic hormone FGF21 is induced in ground squirrels during hibernation but its overexpression is not sufficient to cause torpor. PLoS One. 2013;8(1):e53574. doi: 10.1371/journal.pone.0053574
- Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn. 2008;237(1):18–27. doi: 10.1002/dvdy.21388
- Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol. 2016;(78):223–241. doi: 10.1146/annurev-physiol-021115-105339
- Bostrom P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–468. doi: 10.1038/nature10777
- Ikeda K, Yamada T. UCP1 Dependent and independent thermogenesis in brown and beige adipocytes. Front Endocrinol. 2020;(11):498. doi: 10.3389/fendo.2020.00498
- Lindquist JA, Mertens PR. Cold shock proteins: From cellular mechanisms to pathophysiology and disease. Cell Commun Signal. 2018;16(1):63 doi: 10.1186/s12964-018-0274-6
- Skobkin MA, Skopina OV, Ovchinnikov LP. Multifunctional proteins with a cold shock domain in the regulation of gene expression. Adv Biological Chemistry. 2004;44:3–52. (In Russ).
- Neutelings T, Lambert CA, Nusgens BV, Alain C. Colige effects of mild cold shock (25 °C) followed by warming up at 37 °C on the cellular stress response. PLoS One. 2013;8(7):e69687. doi: 10.1371/journal.pone.0069687
- Laios E, Rebeyka IM, Prody CA. Characterization of cold-induced heat shock protein expression in neonatal rat cardiomyocytes. Mol Cell Biochem. 1997;173(1-3):153–159. doi: 10.1023/a:1006844114348
- Fujita J. Cold shock response in mammalian cells. Mol Microbiol Biotechnol. 1999;1(2):243–255.
- Yasushi S, Yasuko T, Hiroyuki O. Molecular mechanisms underlying hypothermia-induced neuroprotection. Stroke Restarch and Treatment. 2011;2011:809874. doi: 10.4061/2011/809874
- Murshid A, Gong J, Calderwood SK. The role of heat shock proteins in antigen cross presentation. Fron Immunol. 2012;(3):63. doi: 10.3389/fimmu.2012.00063
- Hammerer-Lercher A, Mair J, Bonatti J, et al. Hypoxia induces heat shock protein expression in human coronary artery bypass grafts. Cardiovasc Res. 2001;50(1):115–124. doi: 10.1016/s0008-6363(01)00198-5
- Usman MG, Rafii MY, Ismail MR, et al. Heat shock proteins: Functions and response against heat stress in plants. Int J Sci Technol Res.2017;3(11):204–218.
- De Maio A. Heat shock proteins: Facts, thoughts, and dreams. Shock. 1999;11(1):1–12. doi: 10.1097/00024382-199901000-00001
- Walter S, Buchner J. Molecular chaperones-cellular machines for protein folding. Angewandte Chemie Int Ed Engl. 2002;41(7):1098–1113. doi: 10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9
- Lahvic JL, Ji Y, Marin P, et al. Small heat shock proteins are necessary for heart migration and laterality determination in zebrafish. Dev Biol. 2013;384(2):166–180. doi: 10.1016/j.ydbio.2013.10.009
- Allan ME, Storey KB. Expression of NF-kB and downstream antioxidant genes in skeletal muscle of hibernating ground squirrels, Spermophilus tridecemlineatus. Cell Biochem Funct. 2012;30(2): 166–174. doi: 10.1002/cbf.1832
- Antonova EP, Ilyukha VA, Sergina SN. Antioxidant protection in winter-sleeping mammals. Principles Ecology. 2015;(2):4–20. (In Russ).
- Santoro MG. Heat shock factors and the control of the stress response. Biochemical Pharmacology. 2000;59(1):55–63. doi: 10.1016/S0006-2952(99)00299-3
- Semenova TP, Zakharova NM. Seasonal features of the effects of blockade of opioid receptors on adaptive behavior in hibernating animals. Neurosci Behav Physi. 2015;45(6):658–663. doi: 10.1007/s11055-015-0125-5
- Peart JN, Gross ER, Gross GJ. Opioid-induced preconditioning: Recent advances and future perspectives. Vascular Pharmacol. 2005; 42(5-6):211–218. doi: 10.1016/j.vph.2005.02.003
- Benedict PE, Benedict MB, Su TP, Bolling SF. Opiate drugs and delta-receptor-mediated myocardial protection. Circulation. 1999; 100(19 Suppl):11357–11360. doi: 10.1161/01.cir.100.suppl_2.ii-357
- Borlongan CV, Wang Y, Su TP. Delta opioid peptide (D-Ala 2, D-Leu 5) enkephalin: Linking hibernation and neuroprotection. Front Biosci. 2004;(9):3392–3398. doi: 10.2741/1490
- Lee JY, Liska M, Crowley M, et al. Multifaceted effects of delta opioid receptors and dadle in diseases of the nervous system curr. Drug Discov Technol. 2018;15(2):94–108. doi: 10.2174/1570163814666171010114403
- Sheng S, Huang J, Ren Y, et al. Neuroprotection against hypoxic/ischemic injury: δ-Opioid receptors and BDNF-TrkB pathway. Cell Physiol Biochem. 2018;47(1):302–315. doi: 10.1159/000489808
- Tamura Y, Shintani M, Inoue H, et al. Regulatory mechanism of body temperature in the central nervous system during the maintenance phase of hibernation in Syrian hamsters: Involvement of β-endorphin. Brain Res. 2012;(1448):63–70. doi: 10.1016/j.brainres.2012.02.004
- Halberg F, Chibisov SM, Radysh IV, et al. Time structures (chronomes) in us and around us. Moscow; 2005. 186 р.
- Huang RC. The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel Prize in Physiology or Medicine. Biomed. 2018;41(1):5–8. doi: 10.1016/j.bj.2018.02.003
- Millius A, Ode KL, Ueda HR. A period without PER: Understanding 24-hour rhythms without classic transcription and translation feedback loops. F1000Res. 2019;(8):F1000 Faculty Rev-499. doi: 10.12688/f1000research.18158.1
- Hastings M, O’Neill JS, Maywood ES. Circadian clocks: Regulators of endocrine and metabolic rhythms. J Endocrinol. 2007;195(2): 187–198. doi: 10.1677/JOE-07-0378
- Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature. 2020;7(4):321–362 doi: 10.1080/23328940.2020.1743605
- Shevelev OA, Petrova MV, Yuryev MY, et al. The method of microwave radiothermometry in studies of circadian rhythms of brain temperature. Bulletin Exp Biology Med. 2022;173(3):380–383. (In Russ).
- Harding EC, Franks NP, Wisden W. The temperature dependence of sleep front. Neurosci. 2019;(13):336. doi: 10.3389/fnins.2019.00336
- Peplow M. Structure: The anatomy of sleep. Nature. 2013; 497(7450):S2–S3 doi: 10.1038/497S2a
- Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. doi: 10.1126/scitranslmed.3003748
- Yan T, Qiu Y, Yu X, Yang L. Glymphatic dysfunction: A bridge between sleep disturbance and mood disorders. Front Psychiatry. 2021;(12):658340. doi: 10.3389/fpsyt.2021.658340
- Bacyinski A, Xu M, Wang W, Hu J. The paravascular pathway for brain waste clearance: Current understanding, significance and controversy. Front Neuroanat. 2017;(11):101. doi: 10.3389/fnana.2017.00101
- Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun. 2017;8(1):1434. doi: 10.1038/s41467-017-01484-6
- Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–377. doi: 10.1126/science.1241224
- Kondratiev AN, Tsentsiper LM. The lymphatic system of the brain: structure and practical significance. Anesthesiol Res. 2019;(6):72–80. (In Russ).
- Reddy OC, van der Werf YD. The sleeping brain: Harnessing the power of the glymphatic system through lifestyle choices. Brain Sci. 2020;10(11):868. doi: 10.3390/brainsci10110868
- Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal mechanisms for sleep/wake regulation and modulatory drive. Neuropsychopharmacol. 2018;43(5):937–952. doi: 10.1038/npp.2017.294
- Characosis DP. Brain temperature and sleep. J Higher Nervous Activity. 2013;63(1):113–124. (In Russ). doi: 10.7868/S0044467713010061
- Yu H, Xia F, Lam KS, et al. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans. Clin Chem. 2011;57(5):691–700. doi: 10.1373/clinchem.2010.155184
- Brandão L, Espes D, Westholm JO, et al. Acute sleep loss alters circulating fibroblast growth factor 21 levels in humans: A randomised crossover trial. Sleep Res. 2022;31(2):e13472. doi: 10.1111/jsr.13472
- Abdalla OH, Mascarenhas B, Cheng HY. Death of a protein: The role of e3 ubiquitin ligases in circadian rhythms of mice and flies. Int J Mol Sci. 2022;23(18):10569. doi: 10.3390/ijms231810569
- Morf J, Rey G, Schneider K, et al. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science. 2012;338(6105):379–383. doi: 10.1126/science.1217726
- Liu Y, Hu W, Murakawa Y, et al. Cold-induced RNA-binding proteins regulate circadian gene expression by controlling alternative polyadenylation. Sci Rep. 2013;(3):2054. doi: 10.1038/srep02054
- Jagannath A, Butler R, Godinho SI, et al. The CRTC1-SIK1 pathway regulates entrainment of the circadian clock. Cell. 2013;154(5): 1100–1111. doi: 10.1016/j.cell.2013.08.004
- Pastukhov YF. Slow-wave sleep and molecular chaperones. Evolution Biochemistry Physiology. 2016;52(1):79–90. (In Russ).
- Simonova VV, Guzeev MA, Pastukhov YF. Recovery of sleep after its total deprivation in conditions of prolonged deficiency of stress-inducible chaperone hsp70. I.M. Sechenov Russ J Physiology. 2018;104(8):957–965. (In Russ).
- Hardeland R, Coto-Montes A, Poeggeler B. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int. 2003;20(6):921–962. doi: 10.1081/cbi-120025245
- Budkowska M, Cecerska-Heryć E, Marcinowska Z, et al. The influence of circadian rhythm on the activity of oxidative stress enzymes. Int J Mol Sci. 2022;23(22):14275. doi: 10.3390/ijms232214275
- Koban M, Swinson KL. Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue. Am J Physiol Endocrinol Metab. 2005;289(1):E68–74. doi: 10.1152/ajpendo.00543.2004
- Giannetto C, Arfuso F, Giudice E, et al. Clock gene per 2 daily rhythm: Correlation with the serum level of uncoupling protein 1 (UCP1) in goat and horse. J Therm Biol. 2021;(97):102891. doi: 10.1016/j.jtherbio.2021.102891
- Dent RR, Guilleminault C, Albert LH, et al. Diurnal rhythm of plasma immunoreactive beta-endorphin and its relationship to sleep stages and plasma rhythms of cortisol and prolactin. J Clin Endocrinol Metab. 1981;52(5):942–947. doi: 10.1210/jcem-52-5-942
- Berezin CT, Bergum N, Luchini KA, et al. Endogenous opioid signaling in the retina modulates sleep/wake activity in mice. Neurobiol Sleep Circadian Rhythms. 2022;(13):100078. doi: 10.1016/j.nbscr.2022.100078
- Miguel A, Marcela V, Matamoros-Trejo G, Garcia D. Melatonin induces the synthesis and release of enkephalins in rat brain. Salud Mental. 2010;33(2):123–131.
- Asai MA, Mayagoitia LM, García DG, et al. Rat brain opioid peptides-circadian rhythm is under control of melatonin. Neuropeptides. 2007;41(6):389–397. doi: 10.1016/j.npep.2007.09.001
- Park SH, Weber F. Neural and homeostatic regulation of REM sleep. Front Psychol. 2020;(11):1662. doi: 10.3389/fpsyg.2020.01662
- Renouard L, Hayworth C, Rempe M, et al. REM sleep promotes bidirectional plasticity in developing visual cortex in vivo. Neurobiol Sleep Circadian Rhythms. 2022;(12):100076. doi: 10.1016/j.nbscr.2022.100076
- Li W, Ma L, Yang G, et al. REM sleep selectively prunes and maintains new synapses in development and learning. Nat Neurosci. 2017;20(3):427–437. doi: 10.1038/nn.4479
- Lampe JW, Becker LB. State of the art in therapeutic hypothermia. Annu Rev Med. 2011;(62):79–93. doi: 10.1146/annurev-med-052009-150512
- Shevelev OA, Grechko AV, Petrova MV. Therapeutic hypothermia. Moscow; 2019. 265 р. (In Russ).
- Leng Y, Wang Z, Tsai LK, et al. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol Psychiatry. 2015;20(2):215–223. doi: 10.1038/mp.2013.192
- Jackson TC, Manole MD, Kotermanski SE, et al. Cold stress protein RBM3 responds to temperature change in an ultra-sensitive manner in young neurons. Neuroscience. 2015;(305):268–278. doi: 10.1016/j.neuroscience.2015.08.012
- Kuroda M, Muramatsu R, Maedera N, et al. Peripherally derived FGF21 promotes remyelination in the central nervous system. J Clin Invest. 2017;127(9):3496–3509. doi: 10.1172/JCI94337
- Chen J, Hu J, Liu H, et al. FGF21 Protects the blood-brain barrier by upregulating pparγ via fgfr1/β-klotho after traumatic brain injury. Neurotrauma. 2018;35(17):2091–2103. doi: 10.1089/neu.2017.5271
- Jiang Y, Liu N, Wang Q, et al. Endocrine regulator rFGF21 (recombinant human fibroblast growth factor 21) improves neurological outcomes following focal ischemic stroke of Type 2 diabetes mellitus male mice. Stroke. 2018;49(12):3039–3049. doi: 10.1161/STROKEAHA.118.022119
- Dietrich MO, Andrews ZB, Horvath TL. Exercise-Induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neuroscience. 2008;28(42):10766–10771. doi: 10.1523/JNEUROSCI.2744-08.2008
- Li DJ, Li YH, Yuan HB, et al. The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism. 2017;(68):31–42. doi: 10.1016/j.metabol.2016.12.003
- Asadi Y, Gorjipour F, Behrouzifar S, Vakili A. Irisin peptide protects brain against ischemic injury through reducing apoptosis and enhancing BDNF in a rodent model of stroke. Neurochem Res. 2018;43(8):1549–1560. doi: 10.1007/s11064-018-2569-9
- Liu JJ, Zhao H, Sung JH, et al. Hypothermia blocks ischemic changes in ubiquitin distribution and levels following stroke. Neuroreport. 2006;17(16):1691–1695. doi: 10.1097/01.wnr.0000236868.83970.79
- Xia W, Su L, Jiao J. Cold-induced protein RBM3 orchestrates neurogenesis via modulating Yap mRNA stability in cold stress. Cell Biol. 2018;217(10):3464–3479. doi: 10.1083/jcb.201801143
- Liu J, Xue J, Zhang H, et al. Cloning, expression, and purification of cold inducible RNA-binding protein and its neuroprotective mechanism of action. Brain Res. 2015;(1597):189–195. doi: 10.1016/j.brainres.2014.11.061
- Santos-Junior VA, Lollo PC, Cantero MA, et al. Heat shock proteins: Protection and potential biomarkers for ischemic injury of cardiomyocytes after surgery. Braz Cardiovasc Surg. 2018;33(3): 291–302. doi: 10.21470/1678-9741-2017-0169
- Bayir H, Adelson PD, Wisniewski SR, et al. Therapeutic hypothermia preserves antioxidant defenses after severe traumatic brain injury in infants and children. Crit Care Med. 2009;37(2): 689–695. doi: 10.1097/CCM.0b013e318194abf2
- Zhang H, Zhang JJ, Mei YW, et al. Effects of immediate and delayed mild hypothermia on endogenous antioxidant enzymes and energy metabolites following global cerebral ischemia. Chin Med. 2011;124(17):2764–2766.
- Park Y, Ahn JH, Lee TK, et al. Therapeutic hypothermia reduces inflammation and oxidative stress in the liver after asphyxial cardiac arrest in rats. Acute Crit Care. 2020;35(4):286–295. doi: 10.4266/acc.2020.00304
- Zhao H, Chen Y. Effects of mild hypothermia therapy on the levels of glutathione in rabbit blood and cerebrospinal fluid after cardiopulmonary resuscitation. Iran Basic Med Sci. 2015;18(2):194–198.
- Alva N, Palomeque J, Carbonell T. Oxidative stress and antioxidant activity in hypothermia and rewarming: Can RONS modulate the beneficial effects of therapeutic hypothermia? Oxidative Med Cellular Longevity. 2013;2013:2–10. doi: 10.1155/2013/957054
- Pilozzi A, Carro C, Huang X. Roles of β-endorphin in stress, behavior, neuroinflammation, and brain energy metabolism. Int J Mol Sci. 2020;22(1):338. doi: 10.3390/ijms22010338
- Wu HY, Mao XF, Fan H, Wang YX. p38β mitogen-activated protein kinase signaling mediates exenatide-stimulated microglial β-endorphin expression. Mol Pharmacol. 2017;91(5):451–463. doi: 10.1124/mol.116.107102
- Lai Z, Gu L, Yu L, et al. Delta opioid peptide [d-Ala2, d-Leu5] enkephalin confers neuroprotection by activating delta opioid receptor-AMPK-autophagy axis against global ischemia. Cell Biosci. 2020;(10):79. doi: 10.1186/s13578-020-00441-z
- Staples M, Acosta S, Tajiri N, et al. Delta opioid receptor and its peptide: A receptor-ligand neuroprotection. Int J Mol Sci. 2013; 14(9):17410–17419. doi: 10.3390/ijms140917410
- Rungatscher A, Linardi D, Giacomazzi A, et al. Cardioprotective effect of δ-opioid receptor agonist vs. mild therapeutic hypothermia in a rat model of cardiac arrest with extracorporeal life support. Resuscitation. 2013;84(2):244–248. doi: 10.1016/j.resuscitation.2012.06.016
- Shevelev OA, Petrova MV, Mengistu EM, et al. Correction of local brain temperature after severe brain injury using hypothermia and medical microwave radiometry (MWR) as companion diagnostics. Diagnostics (Basel). 2023;13(6):1159. doi: 10.3390/diagnostics13061159
- Shevelev O, Petrova M, Smolensky A, et al. Using medical microwave radiometry for brain temperature measurements. Drug Discovery Today. 2021;27(3):881–889. doi: 10.1016/j.drudis. 2021.11.004
- Shevelev OA, Grechko AV, Petrova MV, et al. Hypothermia of the brain in the treatment of cerebral lesions. Theory and practice. Moscow; 2020. 230 р. (In Russ).
- Boyarintsev VV, Zhuravlev SV, Ardashev VN, et al. Features of cerebral blood flow in normal and pathological conditions on the background of craniocerebral hypothermia. Aerospace Environmental Med. 2019;53(4):59–64. (In Russ). doi: 10.21687/0233-528X-2019-53-4-59-64
- Shevelev OA, Petrova MV, Saidov SK, Khodorovich NA. Pranil pradkhan neuroprotection mechanisms in cerebral hypothermia (review). General Reanimatol. 2019;15(6):94–114. doi: 10.15360/1813-9779-2019-6-94-114
- Petrova MV, Shevelev OA, Yuryev MY, et al. Selective hypothermia of the cerebral cortex in the complex rehabilitation of patients with chronic disorders of consciousness. General Resuscitation. 2022; 18(2):45–52. (In Russ). doi: 10.15360/1813-9779-2022-2-45-52
- Shevelev OA, Smolensky AV, Petrova MV, et al. Mechanisms of low-temperature rehabilitation technologies. Sports traumatic brain injury. Physical Rehabilitation Med Medical Rehabilitation. 2022;4(1):4–13. (In Russ). doi: 10.36425/rehab88833
- Shevelev OA, Petrova MV, Yuriev MY, Mengistu EM. Circadian temperature rhythms of the healthy and damaged brain. Neurosci Neurol Disord. 2022;(6):32–33. doi: 10.29328/journal.jnnd.1001065
- Shevelev OA, Petrova MV, Yuryev MY, et al. Investigation of the temperature balance of the brain by microwave radiothermometry. General Res. 2023;19(1):41–50. (In Russ). doi: 10.15360/1813-9779-2023-1-2192
- Zozulya SA, Shevelev OA, Tikhonov DV, et al. The heat balance of the brain and markers of inflammatory response in patients with schizophrenia. Bulletin Exp Biology Med. 2022;173(4):522–526. (In Russ). doi: 10.47056/0365-9615-2022-173-4-522-526.
Supplementary files
