Mechanisms of low-temperature rehabilitation technologies. Natural and artificial hypothermia

Cover Page

Cite item

Full Text

Abstract

The literature review covers an analysis of the typical protective and adaptive reaction mechanisms that develop in small rodents that spontaneously hibernate under the cold snap, together with warm-blooded animals and humans during circadian fall of the body temperature at night time and in a course of a slow-wave sleep, along with induced artificial therapeutic hypothermia.

The general features of neuroprotection states development in natural endogenous and induced hypothermia are highlighted, which include metabolic, epigenetic and biophysical reactions that ensure the formation of nonspecific tolerance of the brain to potentially damaging effects. Significant attention has been devoted to the participation of hibernation proteins, opioids and antioxidant systems in the processes of safe exit from state of torpor in animals and in implementation of sleep restoration functions. Taking into account the circadian nature formation of endogenous brain’s hypothermia at night and in the phases of slow sleep, it is suggested that periodic temperature exposure on the cerebral cortex can be applied in order to restore the disturbed circadian rhythms. From the standpoint of common mechanisms of endogenous and induced hypothermia, selective hypothermia of the cerebral cortex can be considered as a nature-like technology.

Based on the extensive experimental material indicating a significant neuroprotective potentials of low temperatures during hibernation, diurnal hypothermia as well as artificially induced hypothermia, it was stated that implementation of the technology for selective hypothermia of the cerebral cortex in order to prevent the negative consequences of cerebral catastrophes are a perspective trend.

About the authors

Oleg A. Shevelev

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; Peoples' Friendship University of Russia

Author for correspondence.
Email: shevelev_o@mail.ru
ORCID iD: 0000-0002-6204-1110
SPIN-code: 9845-2960

MD, Dr. Sci. (Med.), Professor

Russian Federation, 25/2 Petrovka street,107031 Moscow; 6, st. Miklukho-Maclay, Moscow

Marina V. Petrova

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; Peoples' Friendship University of Russia

Email: mpetrova@fnkcrr.ru
ORCID iD: 0000-0003-4272-0957
SPIN-code: 9132-4190

MD, Dr. Sci. (Med.)

Russian Federation, 25/2 Petrovka street,107031 Moscow; 6, st. Miklukho-Maclay, Moscow

Elias M. Mengistu

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; Peoples' Friendship University of Russia

Email: drmengistu@mail.ru
ORCID iD: 0000-0002-6928-2320
SPIN-code: 1387-7508
Russian Federation, 25/2 Petrovka street,107031 Moscow; 6, st. Miklukho-Maclay, Moscow

Vladislav A. Yakimenko

Peoples' Friendship University of Russia

Email: Yavladislav87@gmail.com
ORCID iD: 0000-0003-2308-6313
SPIN-code: 3572-7563
Russian Federation, Moscow

Darina N. Menzhurenkova

Peoples' Friendship University of Russia

Email: pechenki2013@mail.ru
ORCID iD: 0009-0002-7997-0079
Russian Federation, Moscow

Irina N. Kolbaskina

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: kolbaskinairinka@mail.ru
ORCID iD: 0009-0000-2804-8952
Russian Federation, 25/2 Petrovka street,107031 Moscow

Maria A. Zhdanova

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: mchubarova@fnkcrr.ru
ORCID iD: 0000-0001-6550-4777
SPIN-code: 4514-3020
Russian Federation, 25/2 Petrovka street,107031 Moscow

Nadezhda A. Khodorovich

Peoples' Friendship University of Russia

Email: khodorovich_na@rudn.university
ORCID iD: 0000-0002-1289-4545
SPIN-code: 6237-9153

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Ekaterina O. Sheveleva

Peoples' Friendship University of Russia

Email: sheveleva_eo@rudn.university
ORCID iD: 0000-0002-7024-8875
SPIN-code: 2593-2995

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

References

  1. Molchanov YuA, Fedoseeva SA. The influence of cold climate on the origin and evolution of mankind. Nauka i tekhnika v Yakutii. 2015;(1):69–75. (In Russ).
  2. Noyes AM, Lundbye JB. Managing the complications of mild therapeutic hypothermia in the cardiac arrest patient. Intensive Care Med. 2015;30(5):259–269. doi: 10.1177/0885066613516416
  3. Evans AL, Singh NJ, Friebe A, et al. Drivers of hibernation in the brown bear. Front Zool. 2016;(13):7. doi: 10.1186/s12983-016-0140-6
  4. Geiser F. Seasonal expression of avian and mammalian daily torpor and hibernation: Not a simple summer-winter affair. Front Physiol. 2020;(11):436. doi: 10.3389/fphys.2020.00436
  5. Jansen HT, Leise T, Stenhouse G, et al. The bear circadian clock does not “sleep” during winter dormancy. Front Zool. 2016;(13):42. doi: 10.1186/s12983-016-0173-x
  6. Van Breukelen F, Martin S. Reversible depression of transcription during hibernation. J Comp Physiol B. 2002;172(5):355–361. doi: 10.1007/s00360-002-0256-1
  7. Geiser F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol. 2004;(66):239–274. doi: 10.1146/annurev.physiol.66.032102.115105
  8. Heldmaier G, Ortmann S, Elvert R. Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol. 2004;141(3):317–329. doi: 10.1016/j.resp.2004.03.014
  9. Buck CL, Barnes BM. Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Physiol Regulatory Integrative Comp Physiol. 2000;279(1):255–262. doi: 10.1152/ajpregu.2000.279.1.R255
  10. Carey HV, Andrews MT, Martin SL. Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev. 2003;83(4):1153–1181. doi: 10.1152/physrev.00008.2003
  11. Dave KR, Christian SL, Perez-Pinzon MA, Drew KL. Neuroprotection: Lessons from hibernators. Comp Biochem Physiol. 2012;162(1-3):1–9. doi: 10.1016/j.cbpb.2012.01.008
  12. Bouma HR, Carey HV, Kroese FG. Hibernation: The immune system at rest? J Leukocyte Biology. 2010;88(4):619–624. doi: 10.1189/jlb.0310174
  13. Shavlakadze T, Grounds MD. Of bears, frogs, meat, mice and men: Insight into the complexity of factors affecting skeletal muscle atrophy/hypertrophy and myogenesis/adipogenesis. Bio Essays. 2006;28(10):994–1009. doi: 10.1002/bies.20479
  14. Eddy SF, Storey KB. p38 MAPK regulation of transcription factor targets in muscle and heart of hibernating bats, Myotis lucifugus. Cell Biochem Function. 2007;25(6):759–765. doi: 10.1002/cbf.1416
  15. Nelson BT, Ding X, Boney-Montoya J, et al. Metabolic hormone FGF21 is induced in ground squirrels during hibernation but its overexpression is not sufficient to cause torpor. PLoS One. 2013;8(1):e53574. doi: 10.1371/journal.pone.0053574
  16. Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn. 2008;237(1):18–27. doi: 10.1002/dvdy.21388
  17. Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol. 2016;(78):223–241. doi: 10.1146/annurev-physiol-021115-105339
  18. Bostrom P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–468. doi: 10.1038/nature10777
  19. Ikeda K, Yamada T. UCP1 Dependent and independent thermogenesis in brown and beige adipocytes. Front Endocrinol. 2020;(11):498. doi: 10.3389/fendo.2020.00498
  20. Lindquist JA, Mertens PR. Cold shock proteins: From cellular mechanisms to pathophysiology and disease. Cell Commun Signal. 2018;16(1):63 doi: 10.1186/s12964-018-0274-6
  21. Skobkin MA, Skopina OV, Ovchinnikov LP. Multifunctional proteins with a cold shock domain in the regulation of gene expression. Adv Biological Chemistry. 2004;44:3–52. (In Russ).
  22. Neutelings T, Lambert CA, Nusgens BV, Alain C. Colige effects of mild cold shock (25 °C) followed by warming up at 37 °C on the cellular stress response. PLoS One. 2013;8(7):e69687. doi: 10.1371/journal.pone.0069687
  23. Laios E, Rebeyka IM, Prody CA. Characterization of cold-induced heat shock protein expression in neonatal rat cardiomyocytes. Mol Cell Biochem. 1997;173(1-3):153–159. doi: 10.1023/a:1006844114348
  24. Fujita J. Cold shock response in mammalian cells. Mol Microbiol Biotechnol. 1999;1(2):243–255.
  25. Yasushi S, Yasuko T, Hiroyuki O. Molecular mechanisms underlying hypothermia-induced neuroprotection. Stroke Restarch and Treatment. 2011;2011:809874. doi: 10.4061/2011/809874
  26. Murshid A, Gong J, Calderwood SK. The role of heat shock proteins in antigen cross presentation. Fron Immunol. 2012;(3):63. doi: 10.3389/fimmu.2012.00063
  27. Hammerer-Lercher A, Mair J, Bonatti J, et al. Hypoxia induces heat shock protein expression in human coronary artery bypass grafts. Cardiovasc Res. 2001;50(1):115–124. doi: 10.1016/s0008-6363(01)00198-5
  28. Usman MG, Rafii MY, Ismail MR, et al. Heat shock proteins: Functions and response against heat stress in plants. Int J Sci Technol Res.2017;3(11):204–218.
  29. De Maio A. Heat shock proteins: Facts, thoughts, and dreams. Shock. 1999;11(1):1–12. doi: 10.1097/00024382-199901000-00001
  30. Walter S, Buchner J. Molecular chaperones-cellular machines for protein folding. Angewandte Chemie Int Ed Engl. 2002;41(7):1098–1113. doi: 10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9
  31. Lahvic JL, Ji Y, Marin P, et al. Small heat shock proteins are necessary for heart migration and laterality determination in zebrafish. Dev Biol. 2013;384(2):166–180. doi: 10.1016/j.ydbio.2013.10.009
  32. Allan ME, Storey KB. Expression of NF-kB and downstream antioxidant genes in skeletal muscle of hibernating ground squirrels, Spermophilus tridecemlineatus. Cell Biochem Funct. 2012;30(2): 166–174. doi: 10.1002/cbf.1832
  33. Antonova EP, Ilyukha VA, Sergina SN. Antioxidant protection in winter-sleeping mammals. Principles Ecology. 2015;(2):4–20. (In Russ).
  34. Santoro MG. Heat shock factors and the control of the stress response. Biochemical Pharmacology. 2000;59(1):55–63. doi: 10.1016/S0006-2952(99)00299-3
  35. Semenova TP, Zakharova NM. Seasonal features of the effects of blockade of opioid receptors on adaptive behavior in hibernating animals. Neurosci Behav Physi. 2015;45(6):658–663. doi: 10.1007/s11055-015-0125-5
  36. Peart JN, Gross ER, Gross GJ. Opioid-induced preconditioning: Recent advances and future perspectives. Vascular Pharmacol. 2005; 42(5-6):211–218. doi: 10.1016/j.vph.2005.02.003
  37. Benedict PE, Benedict MB, Su TP, Bolling SF. Opiate drugs and delta-receptor-mediated myocardial protection. Circulation. 1999; 100(19 Suppl):11357–11360. doi: 10.1161/01.cir.100.suppl_2.ii-357
  38. Borlongan CV, Wang Y, Su TP. Delta opioid peptide (D-Ala 2, D-Leu 5) enkephalin: Linking hibernation and neuroprotection. Front Biosci. 2004;(9):3392–3398. doi: 10.2741/1490
  39. Lee JY, Liska M, Crowley M, et al. Multifaceted effects of delta opioid receptors and dadle in diseases of the nervous system curr. Drug Discov Technol. 2018;15(2):94–108. doi: 10.2174/1570163814666171010114403
  40. Sheng S, Huang J, Ren Y, et al. Neuroprotection against hypoxic/ischemic injury: δ-Opioid receptors and BDNF-TrkB pathway. Cell Physiol Biochem. 2018;47(1):302–315. doi: 10.1159/000489808
  41. Tamura Y, Shintani M, Inoue H, et al. Regulatory mechanism of body temperature in the central nervous system during the maintenance phase of hibernation in Syrian hamsters: Involvement of β-endorphin. Brain Res. 2012;(1448):63–70. doi: 10.1016/j.brainres.2012.02.004
  42. Halberg F, Chibisov SM, Radysh IV, et al. Time structures (chronomes) in us and around us. Moscow; 2005. 186 р.
  43. Huang RC. The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel Prize in Physiology or Medicine. Biomed. 2018;41(1):5–8. doi: 10.1016/j.bj.2018.02.003
  44. Millius A, Ode KL, Ueda HR. A period without PER: Understanding 24-hour rhythms without classic transcription and translation feedback loops. F1000Res. 2019;(8):F1000 Faculty Rev-499. doi: 10.12688/f1000research.18158.1
  45. Hastings M, O’Neill JS, Maywood ES. Circadian clocks: Regulators of endocrine and metabolic rhythms. J Endocrinol. 2007;195(2): 187–198. doi: 10.1677/JOE-07-0378
  46. Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature. 2020;7(4):321–362 doi: 10.1080/23328940.2020.1743605
  47. Shevelev OA, Petrova MV, Yuryev MY, et al. The method of microwave radiothermometry in studies of circadian rhythms of brain temperature. Bulletin Exp Biology Med. 2022;173(3):380–383. (In Russ).
  48. Harding EC, Franks NP, Wisden W. The temperature dependence of sleep front. Neurosci. 2019;(13):336. doi: 10.3389/fnins.2019.00336
  49. Peplow M. Structure: The anatomy of sleep. Nature. 2013; 497(7450):S2–S3 doi: 10.1038/497S2a
  50. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. doi: 10.1126/scitranslmed.3003748
  51. Yan T, Qiu Y, Yu X, Yang L. Glymphatic dysfunction: A bridge between sleep disturbance and mood disorders. Front Psychiatry. 2021;(12):658340. doi: 10.3389/fpsyt.2021.658340
  52. Bacyinski A, Xu M, Wang W, Hu J. The paravascular pathway for brain waste clearance: Current understanding, significance and controversy. Front Neuroanat. 2017;(11):101. doi: 10.3389/fnana.2017.00101
  53. Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun. 2017;8(1):1434. doi: 10.1038/s41467-017-01484-6
  54. Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–377. doi: 10.1126/science.1241224
  55. Kondratiev AN, Tsentsiper LM. The lymphatic system of the brain: structure and practical significance. Anesthesiol Res. 2019;(6):72–80. (In Russ).
  56. Reddy OC, van der Werf YD. The sleeping brain: Harnessing the power of the glymphatic system through lifestyle choices. Brain Sci. 2020;10(11):868. doi: 10.3390/brainsci10110868
  57. Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal mechanisms for sleep/wake regulation and modulatory drive. Neuropsychopharmacol. 2018;43(5):937–952. doi: 10.1038/npp.2017.294
  58. Characosis DP. Brain temperature and sleep. J Higher Nervous Activity. 2013;63(1):113–124. (In Russ). doi: 10.7868/S0044467713010061
  59. Yu H, Xia F, Lam KS, et al. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans. Clin Chem. 2011;57(5):691–700. doi: 10.1373/clinchem.2010.155184
  60. Brandão L, Espes D, Westholm JO, et al. Acute sleep loss alters circulating fibroblast growth factor 21 levels in humans: A randomised crossover trial. Sleep Res. 2022;31(2):e13472. doi: 10.1111/jsr.13472
  61. Abdalla OH, Mascarenhas B, Cheng HY. Death of a protein: The role of e3 ubiquitin ligases in circadian rhythms of mice and flies. Int J Mol Sci. 2022;23(18):10569. doi: 10.3390/ijms231810569
  62. Morf J, Rey G, Schneider K, et al. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science. 2012;338(6105):379–383. doi: 10.1126/science.1217726
  63. Liu Y, Hu W, Murakawa Y, et al. Cold-induced RNA-binding proteins regulate circadian gene expression by controlling alternative polyadenylation. Sci Rep. 2013;(3):2054. doi: 10.1038/srep02054
  64. Jagannath A, Butler R, Godinho SI, et al. The CRTC1-SIK1 pathway regulates entrainment of the circadian clock. Cell. 2013;154(5): 1100–1111. doi: 10.1016/j.cell.2013.08.004
  65. Pastukhov YF. Slow-wave sleep and molecular chaperones. Evolution Biochemistry Physiology. 2016;52(1):79–90. (In Russ).
  66. Simonova VV, Guzeev MA, Pastukhov YF. Recovery of sleep after its total deprivation in conditions of prolonged deficiency of stress-inducible chaperone hsp70. I.M. Sechenov Russ J Physiology. 2018;104(8):957–965. (In Russ).
  67. Hardeland R, Coto-Montes A, Poeggeler B. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int. 2003;20(6):921–962. doi: 10.1081/cbi-120025245
  68. Budkowska M, Cecerska-Heryć E, Marcinowska Z, et al. The influence of circadian rhythm on the activity of oxidative stress enzymes. Int J Mol Sci. 2022;23(22):14275. doi: 10.3390/ijms232214275
  69. Koban M, Swinson KL. Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue. Am J Physiol Endocrinol Metab. 2005;289(1):E68–74. doi: 10.1152/ajpendo.00543.2004
  70. Giannetto C, Arfuso F, Giudice E, et al. Clock gene per 2 daily rhythm: Correlation with the serum level of uncoupling protein 1 (UCP1) in goat and horse. J Therm Biol. 2021;(97):102891. doi: 10.1016/j.jtherbio.2021.102891
  71. Dent RR, Guilleminault C, Albert LH, et al. Diurnal rhythm of plasma immunoreactive beta-endorphin and its relationship to sleep stages and plasma rhythms of cortisol and prolactin. J Clin Endocrinol Metab. 1981;52(5):942–947. doi: 10.1210/jcem-52-5-942
  72. Berezin CT, Bergum N, Luchini KA, et al. Endogenous opioid signaling in the retina modulates sleep/wake activity in mice. Neurobiol Sleep Circadian Rhythms. 2022;(13):100078. doi: 10.1016/j.nbscr.2022.100078
  73. Miguel A, Marcela V, Matamoros-Trejo G, Garcia D. Melatonin induces the synthesis and release of enkephalins in rat brain. Salud Mental. 2010;33(2):123–131.
  74. Asai MA, Mayagoitia LM, García DG, et al. Rat brain opioid peptides-circadian rhythm is under control of melatonin. Neuropeptides. 2007;41(6):389–397. doi: 10.1016/j.npep.2007.09.001
  75. Park SH, Weber F. Neural and homeostatic regulation of REM sleep. Front Psychol. 2020;(11):1662. doi: 10.3389/fpsyg.2020.01662
  76. Renouard L, Hayworth C, Rempe M, et al. REM sleep promotes bidirectional plasticity in developing visual cortex in vivo. Neurobiol Sleep Circadian Rhythms. 2022;(12):100076. doi: 10.1016/j.nbscr.2022.100076
  77. Li W, Ma L, Yang G, et al. REM sleep selectively prunes and maintains new synapses in development and learning. Nat Neurosci. 2017;20(3):427–437. doi: 10.1038/nn.4479
  78. Lampe JW, Becker LB. State of the art in therapeutic hypothermia. Annu Rev Med. 2011;(62):79–93. doi: 10.1146/annurev-med-052009-150512
  79. Shevelev OA, Grechko AV, Petrova MV. Therapeutic hypothermia. Moscow; 2019. 265 р. (In Russ).
  80. Leng Y, Wang Z, Tsai LK, et al. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol Psychiatry. 2015;20(2):215–223. doi: 10.1038/mp.2013.192
  81. Jackson TC, Manole MD, Kotermanski SE, et al. Cold stress protein RBM3 responds to temperature change in an ultra-sensitive manner in young neurons. Neuroscience. 2015;(305):268–278. doi: 10.1016/j.neuroscience.2015.08.012
  82. Kuroda M, Muramatsu R, Maedera N, et al. Peripherally derived FGF21 promotes remyelination in the central nervous system. J Clin Invest. 2017;127(9):3496–3509. doi: 10.1172/JCI94337
  83. Chen J, Hu J, Liu H, et al. FGF21 Protects the blood-brain barrier by upregulating pparγ via fgfr1/β-klotho after traumatic brain injury. Neurotrauma. 2018;35(17):2091–2103. doi: 10.1089/neu.2017.5271
  84. Jiang Y, Liu N, Wang Q, et al. Endocrine regulator rFGF21 (recombinant human fibroblast growth factor 21) improves neurological outcomes following focal ischemic stroke of Type 2 diabetes mellitus male mice. Stroke. 2018;49(12):3039–3049. doi: 10.1161/STROKEAHA.118.022119
  85. Dietrich MO, Andrews ZB, Horvath TL. Exercise-Induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neuroscience. 2008;28(42):10766–10771. doi: 10.1523/JNEUROSCI.2744-08.2008
  86. Li DJ, Li YH, Yuan HB, et al. The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism. 2017;(68):31–42. doi: 10.1016/j.metabol.2016.12.003
  87. Asadi Y, Gorjipour F, Behrouzifar S, Vakili A. Irisin peptide protects brain against ischemic injury through reducing apoptosis and enhancing BDNF in a rodent model of stroke. Neurochem Res. 2018;43(8):1549–1560. doi: 10.1007/s11064-018-2569-9
  88. Liu JJ, Zhao H, Sung JH, et al. Hypothermia blocks ischemic changes in ubiquitin distribution and levels following stroke. Neuroreport. 2006;17(16):1691–1695. doi: 10.1097/01.wnr.0000236868.83970.79
  89. Xia W, Su L, Jiao J. Cold-induced protein RBM3 orchestrates neurogenesis via modulating Yap mRNA stability in cold stress. Cell Biol. 2018;217(10):3464–3479. doi: 10.1083/jcb.201801143
  90. Liu J, Xue J, Zhang H, et al. Cloning, expression, and purification of cold inducible RNA-binding protein and its neuroprotective mechanism of action. Brain Res. 2015;(1597):189–195. doi: 10.1016/j.brainres.2014.11.061
  91. Santos-Junior VA, Lollo PC, Cantero MA, et al. Heat shock proteins: Protection and potential biomarkers for ischemic injury of cardiomyocytes after surgery. Braz Cardiovasc Surg. 2018;33(3): 291–302. doi: 10.21470/1678-9741-2017-0169
  92. Bayir H, Adelson PD, Wisniewski SR, et al. Therapeutic hypothermia preserves antioxidant defenses after severe traumatic brain injury in infants and children. Crit Care Med. 2009;37(2): 689–695. doi: 10.1097/CCM.0b013e318194abf2
  93. Zhang H, Zhang JJ, Mei YW, et al. Effects of immediate and delayed mild hypothermia on endogenous antioxidant enzymes and energy metabolites following global cerebral ischemia. Chin Med. 2011;124(17):2764–2766.
  94. Park Y, Ahn JH, Lee TK, et al. Therapeutic hypothermia reduces inflammation and oxidative stress in the liver after asphyxial cardiac arrest in rats. Acute Crit Care. 2020;35(4):286–295. doi: 10.4266/acc.2020.00304
  95. Zhao H, Chen Y. Effects of mild hypothermia therapy on the levels of glutathione in rabbit blood and cerebrospinal fluid after cardiopulmonary resuscitation. Iran Basic Med Sci. 2015;18(2):194–198.
  96. Alva N, Palomeque J, Carbonell T. Oxidative stress and antioxidant activity in hypothermia and rewarming: Can RONS modulate the beneficial effects of therapeutic hypothermia? Oxidative Med Cellular Longevity. 2013;2013:2–10. doi: 10.1155/2013/957054
  97. Pilozzi A, Carro C, Huang X. Roles of β-endorphin in stress, behavior, neuroinflammation, and brain energy metabolism. Int J Mol Sci. 2020;22(1):338. doi: 10.3390/ijms22010338
  98. Wu HY, Mao XF, Fan H, Wang YX. p38β mitogen-activated protein kinase signaling mediates exenatide-stimulated microglial β-endorphin expression. Mol Pharmacol. 2017;91(5):451–463. doi: 10.1124/mol.116.107102
  99. Lai Z, Gu L, Yu L, et al. Delta opioid peptide [d-Ala2, d-Leu5] enkephalin confers neuroprotection by activating delta opioid receptor-AMPK-autophagy axis against global ischemia. Cell Biosci. 2020;(10):79. doi: 10.1186/s13578-020-00441-z
  100. Staples M, Acosta S, Tajiri N, et al. Delta opioid receptor and its peptide: A receptor-ligand neuroprotection. Int J Mol Sci. 2013; 14(9):17410–17419. doi: 10.3390/ijms140917410
  101. Rungatscher A, Linardi D, Giacomazzi A, et al. Cardioprotective effect of δ-opioid receptor agonist vs. mild therapeutic hypothermia in a rat model of cardiac arrest with extracorporeal life support. Resuscitation. 2013;84(2):244–248. doi: 10.1016/j.resuscitation.2012.06.016
  102. Shevelev OA, Petrova MV, Mengistu EM, et al. Correction of local brain temperature after severe brain injury using hypothermia and medical microwave radiometry (MWR) as companion diagnostics. Diagnostics (Basel). 2023;13(6):1159. doi: 10.3390/diagnostics13061159
  103. Shevelev O, Petrova M, Smolensky A, et al. Using medical microwave radiometry for brain temperature measurements. Drug Discovery Today. 2021;27(3):881–889. doi: 10.1016/j.drudis. 2021.11.004
  104. Shevelev OA, Grechko AV, Petrova MV, et al. Hypothermia of the brain in the treatment of cerebral lesions. Theory and practice. Moscow; 2020. 230 р. (In Russ).
  105. Boyarintsev VV, Zhuravlev SV, Ardashev VN, et al. Features of cerebral blood flow in normal and pathological conditions on the background of craniocerebral hypothermia. Aerospace Environmental Med. 2019;53(4):59–64. (In Russ). doi: 10.21687/0233-528X-2019-53-4-59-64
  106. Shevelev OA, Petrova MV, Saidov SK, Khodorovich NA. Pranil pradkhan neuroprotection mechanisms in cerebral hypothermia (review). General Reanimatol. 2019;15(6):94–114. doi: 10.15360/1813-9779-2019-6-94-114
  107. Petrova MV, Shevelev OA, Yuryev MY, et al. Selective hypothermia of the cerebral cortex in the complex rehabilitation of patients with chronic disorders of consciousness. General Resuscitation. 2022; 18(2):45–52. (In Russ). doi: 10.15360/1813-9779-2022-2-45-52
  108. Shevelev OA, Smolensky AV, Petrova MV, et al. Mechanisms of low-temperature rehabilitation technologies. Sports traumatic brain injury. Physical Rehabilitation Med Medical Rehabilitation. 2022;4(1):4–13. (In Russ). doi: 10.36425/rehab88833
  109. Shevelev OA, Petrova MV, Yuriev MY, Mengistu EM. Circadian temperature rhythms of the healthy and damaged brain. Neurosci Neurol Disord. 2022;(6):32–33. doi: 10.29328/journal.jnnd.1001065
  110. Shevelev OA, Petrova MV, Yuryev MY, et al. Investigation of the temperature balance of the brain by microwave radiothermometry. General Res. 2023;19(1):41–50. (In Russ). doi: 10.15360/1813-9779-2023-1-2192
  111. Zozulya SA, Shevelev OA, Tikhonov DV, et al. The heat balance of the brain and markers of inflammatory response in patients with schizophrenia. Bulletin Exp Biology Med. 2022;173(4):522–526. (In Russ). doi: 10.47056/0365-9615-2022-173-4-522-526.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».