Prospects for a comprehensive assessment of sclerostin, arterial calcification and stiffness in the context of coronary heart disease
- Authors: Snimshchikova I.A.1, Revyakina M.O.1, Kabina N.A.1, Mityaeva E.V.1
-
Affiliations:
- Orel State University named after I.S. Turgenev
- Issue: Vol 17, No 3 (2025)
- Pages: 336-357
- Section: Public Health and Preventive Medicine
- Published: 31.08.2025
- URL: https://journals.rcsi.science/2658-6649/article/view/316263
- DOI: https://doi.org/10.12731/2658-6649-2025-17-3-1216
- EDN: https://elibrary.ru/NXRFOQ
- ID: 316263
Cite item
Full Text
Abstract
Background. Coronary heart disease is accompanied by increased calcification and vascular stiffness, which is associated with an increased risk of adverse cardiovascular events. This manuscript focuses on the contribution of sclerostin to the development of vascular calcification and arterial stiffness, which is a key aspect of coronary heart disease.
Purpose. To assess the possibility of developing a comprehensive approach to assessing the likelihood of vascular calcification, taking into account indicators of arterial stiffness and a marker of extraosseous calcification (sclerostin) to improve noninvasive diagnostics of cardiovascular risk.
Materials and methods. The study included patients with myocardial infarction and unstable angina. Arterial stiffness index and calcification were assessed taking into account coronary angiography data and 24-hour blood pressure monitoring. Serum sclerostin concentrations were measured using ELISA.
Results. An increase in sclerostin concentration was found in patients with coronary artery stenosis of more than 50% in combination with intravascular calcified atherosclerotic plaques. A strong correlation was found between serum sclerostin concentration and arterial stiffness index. Results on a significant increase in the arterial stiffness index against the background of coronary artery calcification were obtained. The results of ROC analysis showed the possibility of using threshold value of arterial stiffness index in assessing the severity of coronary artery disease.
Conclusion. Understanding the relationship between sclerostin, calcification and vascular stiffness can help in the development of new strategies for the diagnosis, prevention and treatment of coronary artery disease.
About the authors
Irina A. Snimshchikova
Orel State University named after I.S. Turgenev
Author for correspondence.
Email: snimshikova@mail.ru
ORCID iD: 0000-0002-4258-963X
SPIN-code: 2728-3520
Scopus Author ID: 57194214547
ResearcherId: X-6716-2019
Leading Researcher of the Laboratory of New Medical Technologies, Head of the Department of Immunology and Specialized Clinical Disciplines, Director of the Medical Institute, Doctor of Medical Sciences, Professor
Russian Federation, 95, Komsomolskaya Str., Orel, 302026, Russian Federation
Maria O. Revyakina
Orel State University named after I.S. Turgenev
Email: revyakina_masha@mail.ru
ORCID iD: 0000-0003-1593-5290
SPIN-code: 4921-7530
Scopus Author ID: 57326361600
Senior Researcher, Laboratory of New Medical Technologies, Associate Professor, Department of Immunology and Specialized Clinical Disciplines, Candidate of Medical Sciences
Natalia A. Kabina
Orel State University named after I.S. Turgenev
Email: apt53boss@mail.ru
ORCID iD: 0009-0007-6915-9035
Senior Lecturer, Department of Pharmacology, Clinical Pharmacology and Pharmacy
Russian Federation, 95, Komsomolskaya Str., Orel, 302026, Russian Federation
Ekaterina V. Mityaeva
Orel State University named after I.S. Turgenev
Email: orel_rel@mail.ru
ORCID iD: 0000-0001-9964-7549
SPIN-code: 9917-8471
Scopus Author ID: 57204703234
ResearcherId: LRC-5828-2024
Associate Professor of the Department of Internal Medicine, PhD in Medicine
Russian Federation, 95, Komsomolskaya Str., Orel, 302026, Russian Federation
References
- Brandenburg, V. M., Kramann, R., Koos, R., Krüger, T., Schurgers, L., Mühlenbruch, G., Hübner, S., Gladziwa, U., Drechsler, C., & Ketteler, M. (2013). Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: a cross-sectional study. BMC Nephrology, 14, 219. https://doi.org/10.1186/1471-2369-14-219 EDN: https://elibrary.ru/gzbmxs
- Ceccherini, E., Cecchettini, A., Gisone, I., Persiani, E., Morales, M. A., & Vozzi, F. (2022). Vascular Calcification: In Vitro Models under the Magnifying Glass. Biomedicines, 10(10), 2491. https://doi.org/10.3390/biomedicines10102491 EDN: https://elibrary.ru/disuyh
- Chen, Y., Zhao, X., & Wu, H. (2020). Arterial Stiffness: A Focus on Vascular Calcification and Its Link to Bone Mineralization. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(5), 1078-1093. https://doi.org/10.1161/ATVBAHA.120.313131 EDN: https://elibrary.ru/dtcvyk
- Demer, L. L., & Tintut, Y. (2008). Vascular calcification: pathobiology of a multifaceted disease. Circulation, 117(22), 2938-2948. https://doi.org/10.1161/CIRCULATIONAHA.107.743161 EDN: https://elibrary.ru/mmgbvr
- Durham, A. L., Speer, M. Y., Scatena, M., Giachelli, C. M., & Shanahan, C. M. (2018). Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovascular Research, 114(4), 590-600. https://doi.org/10.1093/cvr/cvy010
- Figurek, A., & Spasovski, G. (2018). Is serum sclerostin a marker of atherosclerosis in patients with chronic kidney disease-mineral and bone disorder? International Urology and Nephrology, 50(10), 1863-1870. https://doi.org/10.1007/s11255-018-1935-5 EDN: https://elibrary.ru/oanvkd
- Gao, L., Lu, D., Xia, G., et al. (2021). The relationship between arterial stiffness index and coronary heart disease and its severity. BMC Cardiovascular Disorders, 21, 527. https://doi.org/10.1186/s12872-021-02350-6 EDN: https://elibrary.ru/hlxrmh
- Golledge, J., & Thanigaimani, S. (2022). Role of Sclerostin in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 42(7), e187-e202. https://doi.org/10.1161/ATVBAHA.122.317635 EDN: https://elibrary.ru/jtlerh
- Gui, Z., Shao, C., Zhan, Y., Wang, Z., & Li, L. (2024). Vascular calcification: High incidence sites, distribution, and detection. Cardiovascular Pathology, 72, 107667. https://doi.org/10.1016/j.carpath.2024.107667 EDN: https://elibrary.ru/qzdifq
- Hampson, G., Edwards, S., Conroy, S., Blake, G. M., Fogelman, I., & Frost, M. L. (2013). The relationship between inhibitors of the Wnt signalling pathway (Dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone, 56(1), 42-47. https://doi.org/10.1016/j.bone.2013.05.010
- Hata, Y., Mochizuki, J., Okamoto, S., Matsumi, H., & Hashimoto, K. (2022). Aortic calcification is associated with coronary artery calcification and is a potential surrogate marker for ischemic heart disease risk: A cross-sectional study. Medicine, 101(29), e29875. https://doi.org/10.1097/MD.0000000000029875 EDN: https://elibrary.ru/yhytxe
- Kadıoğlu, A., & Bahadır, S. (2022). Breast arterial calcifications as an indicator of atherosclerotic cardiovascular disease: comparative analysis of coronary computed tomography scoring systems and carotid intima-media thickness. Quantitative Imaging in Medicine and Surgery, 12(1), 457-469. https://doi.org/10.21037/qims-21-98 EDN: https://elibrary.ru/yyftdo
- Koos, R., Brandenburg, V., Mahnken, A. H., Schneider, R., Dohmen, G., Autschbach, R., Marx, N., & Kramann, R. (2013). Sclerostin as a potential novel biomarker for aortic valve calcification: an in-vivo and ex-vivo study. The Journal of Heart Valve Disease, 22(3), 317-325.
- Lee, S. J., Lee, I. K., & Jeon, J. H. (2020). Vascular Calcification-New Insights Into Its Mechanism. International Journal of Molecular Sciences, 21(8), 2685. https://doi.org/10.3390/ijms21082685 EDN: https://elibrary.ru/joqymx
- Mack, C. P. (2011). Signaling mechanisms that regulate smooth muscle cell differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(7), 1495-1505. https://doi.org/10.1161/ATVBAHA.110.221135
- Mozos, I., Malainer, C., Horbańczuk, J., Gug, C., Stoian, D., Luca, C. T., & Atanasov, A. G. (2017). Inflammatory Markers for Arterial Stiffness in Cardiovascular Diseases. Frontiers in Immunology, 8, 1058. https://doi.org/10.3389/fimmu.2017.01058
- Ortega, M. A., De Leon-Oliva, D., Gimeno-Longas, M. J., Boaru, D. L., Fraile-Martinez, O., García-Montero, C., de Castro, A. V., Barrena-Blázquez, S., López-González, L., Amor, S., García-Honduvilla, N., Buján, J., Guijarro, L. G., Castillo-Ruiz, E., Álvarez-Mon, M. Á., Albillos, A., Álvarez-Mon, M., Diaz, R., & Saez, M. A. (2024). Vascular Calcification: Molecular Networking, Pathological Implications and Translational Opportunities. Biomolecules, 14(3), 275. https://doi.org/10.3390/biom14030275 EDN: https://elibrary.ru/tbtxgc
- Popovic, D. S., Mitrovic, M., Tomic-Naglic, D., Icin, T., Bajkin, I., Vukovic, B., Benc, D., Zivanovic, Z., Kovacev-Zavisic, B., & Stokic, E. (2017). The Wnt/β-catenin Signalling Pathway Inhibitor Sclerostin is a Biomarker for Early Atherosclerosis in Obesity. Current Neurovascular Research, 14(3), 200-206. https://doi.org/10.2174/1567202614666170619080526 EDN: https://elibrary.ru/yhxvlc
- Rennenberg, R. J., Kessels, A. G., Schurgers, L. J., van Engelshoven, J. M., de Leeuw, P. W., & Kroon, A. A. (2009). Vascular calcifications as a marker of increased cardiovascular risk: a meta-analysis. Vascular Health and Risk Management, 5(1), 185-197. https://doi.org/10.2147/vhrm.s4822 EDN: https://elibrary.ru/nakwvx
- Snimshchikova, I. A., & Plotnikova, M. O. (2023). Role of morphogenic proteins of the WNT signaling pathway in coronary artery disease. Medical Immunology (Russia), 25(4), 985-990. https://doi.org/10.15789/1563-0625-ROM-2835 EDN: https://elibrary.ru/ppgrow
- Sutton, N. R., Malhotra, R., St Hilaire, C., Aikawa, E., Blumenthal, R. S., Gackenbach, G., Goyal, P., Johnson, A., Nigwekar, S. U., Shanahan, C. M., Towler, D. A., Wolford, B. N., & Chen, Y. (2023). Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 43(1), 15-29. https://doi.org/10.1161/ATVBAHA.122.317332 EDN: https://elibrary.ru/jscdmh
- Toussaint, N. D., Lau, K. K., Strauss, B. J., Polkinghorne, K. R., & Kerr, P. G. (2008). Associations between vascular calcification, arterial stiffness and bone mineral density in chronic kidney disease. Nephrology, Dialysis, Transplantation, 23(2), 586-593. https://doi.org/10.1093/ndt/gfm660 EDN: https://elibrary.ru/ixuljd
- van der Toorn, J. E., Bos, D., Arshi, B., Leening, M. J. G., Vernooij, M. W., Ikram, M. A., Ikram, M. K., & Kavousi, M. (2021). Arterial calcification at different sites and prediction of atherosclerotic cardiovascular disease among women and men. Atherosclerosis, 337, 27-34. https://doi.org/10.1016/j.atherosclerosis.2021.10.009 EDN: https://elibrary.ru/bogovk
- Wang, X.-R., Yuan, L., Zhang, J.-J., Hao, L., & Wang, D.-G. (2017). Serum sclerostin values are associated with abdominal aortic calcification and predict cardiovascular events in patients with chronic kidney disease stages 3-5D. Nephrology, 22(4), 286-292. https://doi.org/10.1111/NEP.12813
- Yang, S., Zeng, Z., Yuan, Q., Chen, Q., Wang, Z., Xie, H., & Liu, J. (2023). Vascular calcification: from the perspective of crosstalk. Molecular Biomedicine, 4(1), 35. https://doi.org/10.1186/s43556-023-00146-y EDN: https://elibrary.ru/vivgbl
- Yu, Q., Li, W., Xie, D., Zheng, X., Huang, T., Xue, P., Guo, B., Gao, Y., Zhang, C., Sun, P., Li, M., Wang, G., Cheng, X., Zheng, Q., & Song, Z. (2018). PI3Kγ promotes vascular smooth muscle cell phenotypic modulation and transplant arteriosclerosis via a SOX9-dependent mechanism. EBioMedicine, 36, 39-53. https://doi.org/10.1016/j.ebiom.2018.09.013
Supplementary files
