Application of statistical methods for predicting successful adaptation of new players in a team

Cover Page

Cite item

Abstract

modern sports management requires effective tools for predicting the successful adaptation of players during transfers between teams. This article presents an integrated model for predicting athlete adaptation, based on a combination of machine learning methods, statistical analysis, and expert assessments. Objective: to develop and evaluate the effectiveness of a comprehensive model for predicting the successful adaptation of players in new teams, taking into account individual, team, and external factors. Methods: the research is based on a longitudinal analysis of transfers in professional sports, using statistical methods, Bayesian modeling, and machine learning algorithms. A composite index, considering the speed of integration and athlete performance, was used to assess the success of adaptation. Issues of predicting player adaptation were considered in the works of Smith, Ruiz, and other researchers, who proposed various approaches from expert assessments to the application of machine learning methods. Results: the developed model demonstrates a prediction accuracy of 78.2%, which exceeds existing approaches, including expert assessments (67.2%), linear regression (69.8%), and Bayesian classifier (73.6%). The highest accuracy was achieved when predicting adaptation in basketball (81.3%) and during intra-championship transfers (81.7%). Conclusion: the proposed integrated model provides high accuracy in predicting the successful adaptation of players and can serve as an effective decision support tool in sports management when planning transfer policies.

About the authors

A. A Zaborovsky

Moscow University of Finance and Industry Synergy

References

  1. Гореликов В.А. Трансфер игрока в профессиональном спорте как маркетинговый продукт спортивного клуба // Наука и спорт: современные тенденции. 2021. Т. 9. № 3. С. 115 – 124. https://doi.org/10.36028/2308-8826-2021-9-3-115-124
  2. Шигапов Р.Р., Ференец А.А. Рекомендательная система подбора игроков в командных видах спорта, построенная на основе машинного обучения // Электронные библиотеки. 2022. Т. 25. № 3. С. 257 – 280. https://doi.org/10.26907/1562-5419-2022-25-3-257-280
  3. Дусакаева С.Т., Хохлов И.А., Нирян П.Л., Носарев М.П. Применение алгоритма нечеткой логики Мамдани для отбора игроков в футбольный клуб на предсезонных сборах // Современные технологии. Системный анализ. Моделирование. 2022. № 4 (76). URL: https://cyberleninka.ru/article/n/primenenie-algoritma-nechetkoy-logiki-mamdani-dlya-otbora-igrokov-v-futbolnyy-klub-na-predsezonnyh-sborah (дата обращения: 10.12.2024)
  4. Морозова В.И., Логунова Д.И. Прогнозирование методом машинного обучения // Молодой ученый. 2022. № 21 (416). С. 202 – 204. URL: https://moluch.ru/archive/416/92048/ (дата обращения: 10.12.2024)
  5. Футбольные трансферы – таблица переходов [Электронный ресурс] // Soccer365. URL: https://soccer365.ru/transfers/ (дата обращения: 10.12.2024)
  6. Таблица переходов [Электронный ресурс] // Пресс-служба КХЛ. URL: https://www.khl.ru/news/2024/09/14/531024.html (дата обращения: 10.12.2024)
  7. Трансферы клубов Единой Лиги ВТБ. Межсезонье-2024 [Электронный ресурс] // Единая Лига ВТБ. URL: https://vtb-league.com/ru/news/transfery-klubov-edinoj-ligi-vtb-mezhsezone-2024/ (дата обращения: 10.12.2024)
  8. Трансферы в мужском волейболе [Электронный ресурс] // Volleybox. URL: https://volleybox.net/ru/transfers (дата обращения: 10.12.2024)
  9. Anyama O.U., Igiri C.P. An Application of Linear Regression & Artificial Neural Network Model in the NFL Result Prediction // International Journal of Engineering Research & Technology. 2015. Vol. 4. № 1. P. 457 – 461.
  10. Dadelo S., Turskis Z., Zavadskas E.K., Dadeliene R.Multi-criteria assessment and ranking system of sport team formation based on objective-measured values of criteria set // Expert Systems with Applications. 2014. Vol. 41. № 14. P. 6106 – 6113.
  11. Hoegh A., Carzolio M., Crandell I., Hu X., Roberts L., Song Y., Leman S.C. Nearest-neighbor matchup effects: accounting for team matchups for predicting March Madness // Journal of Quantitative Analysis in Sports. 2015. Vol. 11. № 1. P. 29 – 37.
  12. Merig? J.M., Gil-Lafuente A.M. Decision-making in sport management based on the OWA operator // Expert Systems with Applications. 2011. Vol. 38. № 8. P. 10408 – 10413.
  13. Papi? V., Ple?tina V. Identification of sport talents using a web-oriented expert system with a fuzzy module // Expert Systems with Applications. 2009. Vol. 36. № 5. P. 8830 – 8838.
  14. Ruiz F.J.R., Perez-Cruz F. A generative model for predicting outcomes in college basketball // Journal of Quantitative Analysis in Sports. 2015. Vol. 11. № 1. P. 39 – 52.
  15. Smith L., Lipscomb B., Simkins A. Data mining in sports: predicting Cy Young award winners // Journal of Computing Sciences in Colleges. 2007. Vol. 22. № 4. P. 115 – 121.
  16. Tavana M., Azizi F., Azizi F., Behzadian M. A fuzzy inference system with application to player selection and team formation in multi-player sports // Sport Management Review. 2013. Vol. 16. № 1. P. 97 – 110.
  17. Wu D., Olson D.L. A TOPSIS Data Mining Demonstration and Application to Credit Scoring // International Journal of Data Warehousing & Mining. 2006. Vol. 2. № 3. P. 1 – 10.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).