Integration of operational and financial metrics in the analytical methodology of technology startups

Cover Page

Cite item

Abstract

the article is devoted to the construction of an integrated methodology for analyzing technology startups, where financial indicators are linked to operational indicators of the product, market and organization. The relevance is dictated by the shift of the assessment from purely accounting metrics to data on the growth of the user base, retention, conversion and digital maturity of analytics. The novelty is expressed in the formation of a unified logic linking the dynamics of MRR, cash flow and the unit economy with the trajectory of LTV, CAC, virality and the results of experimentation. The paper describes the principles of the metrics layout, the conditions of portability between the stages of the life cycle, and the procedure for interpreting early success signals. The mechanisms of predicting the achievement of break-even, assessment of non-material factors (TRL, team, network of partnerships) and the influence of media tone on the probability of the next round are studied. Particular attention is paid to the applicability of the balanced scorecard to the startup environment. The aim of the work is to develop a reproducible metric integration scheme for the diagnosis and prediction of sustainability. To achieve this goal, comparative analysis, systematization of literature, logical and statistical substantiation and conceptual modeling are involved. The conclusion describes the practical rules of dashboards and interpretation thresholds, useful for founders, analysts and investors.

About the authors

M. Azatyan

Fractional CFO for AI and DeepTech Startups, Armenia

References

  1. Бурмистрова Е.П. Влияние метода Lean Startup на показатели эффективности проекта // Интерактивная наука. 2020. № 7 (53). С. 80 – 82. URL: https://cyberleninka.ru/article/n/vliyanie-metoda-lean-startup-na-pokazateli-effektivnosti-proekta (дата обращения: 18.06.2025)
  2. Azeem M., Khanna A. A systematic literature review of startup survival and future research agenda // Journal of Research in Marketing and Entrepreneurship. 2023. Vol. 26. № 9. С. 1 – 20. doi: 10.1108/JRME-03-2022-0040. URL: https://www.researchgate.net/publication/371532591_A_systematic_literature_review_of_startup_survival_and_future_research_agenda
  3. Carb?-Valverde S., Cuadros-Solas P.J., Rodr?guez-Fern?ndez F. Entrepreneurial, institutional and financial strategies for FinTech profitability // Financial Innovation, Springer;Southwestern University of Finance and Economics. 2022. Vol. 8 (1). P. 1 – 36. December. doi: 10.1186/s40854-021-00325-2
  4. Garitta C., Grassi L. Predicting break-even in FinTech startups as a signal for success // Finance Research Letters. 2025. Vol. 74. Article ID: 106735. doi: 10.1016/j.frl.2024.106735. URL: https://www.sciencedirect.com/science/article/pii/S1544612324017641
  5. Griva A., Kotsopoulos D., Karagiannaki A., et al. What do growing early-stage digital start-ups look like? A mixed-methods approach // International Journal of Information Management. 2023. Vol. 69. Article ID: 102427. URL: https://eprints.whiterose.ac.uk/id/eprint/180255/
  6. Harms R., Schwery M. Lean Startup: Operationalizing Lean Startup Capability and testing its performance implications // Journal of Small Business Management. 2019. Vol. 58. № 1. P. 200 – 223. doi: 10.1080/00472778.2019.1659677
  7. Maheshwari V., Kumar S., Yew B. C., и др. Qualitative factors affecting IT/IS startups valuation // Multidisciplinary Reviews. 2025. Vol. 8. № 12. Article ID: 2025386. doi: 10.31893/multirev.2025386.
  8. Madsen D. ?. Balanced Scorecard: History, Implementation, and Impact // Encyclopedia. 2025. Vol. 5. № 1. P. 39. doi: 10.3390/encyclopedia5010039.
  9. Qiu Z., Qu Yu., Yang S., Zhang V., Xu V., Zhao H. Improving the effectiveness of predicting the success of startup financing based on social media sentiment // Systems. 2025. Vol. 13. No. 7. Article number: 520. P. 1-15. doi: 10.3390/systems 13070520
  10. Satmari E., Varga Z., Molnar A., Nemet G. Why do startups fail? A model of core competence deficit // Frontiers in Psychology. 2024. Vol. 15. P. 4 – 7. doi: 10.3389/fpsyg.2024.1299135

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).