Organization of a modern credit risk analysis and control system for a commercial bank
- Authors: Zhivko A.B1
-
Affiliations:
- Plekhanov Russian University of Economics
- Issue: Vol 8, No 5 (2025)
- Pages: 166-172
- Section: ARTICLES
- URL: https://journals.rcsi.science/2658-5286/article/view/377857
- ID: 377857
Cite item
Abstract
the article examines the transformation of the credit risk analysis and control system in a commercial bank under the influence of various factors of modern conditions. The relevance of the work is due to the need to move from lagging traditional risk management methods to proactive, predictive approaches based on big data analysis. The purpose of the article is to develop the concept of a modern credit risk analysis system that integrates advanced artificial intelligence technologies at all stages of the credit lifecycle. The scientific novelty lies in the proposal of a comprehensive architecture for a hybrid intelligent system combining predictive analytics and generative models to automate decision-making processes and improve their accuracy. The conducted research demonstrates that the organization of a modern credit risk analysis and control system in a commercial bank is inextricably linked with the integration of advanced artificial intelligence technologies. The architecture of a hybrid system proposed in the article, combining predictive machine learning analytics and the operational capabilities of generative AI, allows us to move from reactive to proactive risk management. The greatest synergistic effect is achieved with the end-to-end application of AI at all stages of the credit lifecycle: from scoring using alternative data to automating monitoring and collection using generative AI.
References
- Акулина В.А., Зверева А.В., Торгашин М.Н. Проблемы управления кредитным риском в коммерческом банке // Научный альманах. 2023. № 6-1 (104). С. 14 – 17.
- Искусственный интеллект в банках – применение и преимущества // Scand.com. URL: https://scand.com/ru/company/blog/ai-in-banking/ (дата обращения: 25.05.2025)
- Кара Д.А. Кредитные риски в системе риск-менеджмента // Вестник евразийской науки. 2023. Т. 15. № S3. С. 15 – 19.
- Морозова А.Д. Подходы к управлению кредитными рисками коммерческих банков // Экономика и бизнес: теория и практика. 2022. № 11-2 (93). С. 53 – 56. doi: 10.24412/2411-0450-2022-11-2-53-56
- Панченко А.М., Аджиев Д.О., Аджиева А.Ю. Банковские риски: связь кредитного риска и риска ликвидности // Modern Science. 2022. № 4-2. С. 102 – 105.
- Пашина М.А., Бездудная А.Г., Пашина А.Л. Управление рисками с целью повышения финансовой устойчивости кредитных организаций. Санкт-Петербург: Санкт-Петербургский государственный экономический университет, 2025. 109 с. ISBN 978-5-7310-6618-1
- Demajo L.M., Vella V., Dingli A. Explainable AI for Interpretable Credit Scoring // Computer Science & Information Technology. 2020. P. 185 – 203.
- Kremer А., Govindarajan А., Singh Н., Kristensen I. Embracing generative AI in credit risk // McKinsey & Company. 2023. URL: https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/embracing-generative-ai-in-credit-risk (date of access: 25.05.2025)
- Misheva B.H., Osterrieder J., Hirsa A., Kulkarni O. Explainable AI in Credit Risk Management // Reprint. 2021. URL: https://www.researchgate.net/publication/349703943_Explainable_AI_in_Credit_Risk_Management (date of access: 25.05.2025). doi: 10.48550/arXiv.2103.00949
- Shukla R., Sawant R., Pawar R.A Comparative Study of Deep Learning and Machine Learning Techniques in Credit Score Classification // International Journal of Innovative Research in Computer and Communication Engineering. 2023. № 11 (07). P. 10004 – 10010. doi: 10.15680/IJIRCCE.2023.1107075
Supplementary files
