Применение метода продолженных граничных условий к решению задач дифракции на различных типах частиц сложной структуры

Обложка

Цитировать

Полный текст

Аннотация

В статье рассмотрено применение метода продолженных граничных условий к двумерной задаче дифракции электромагнитных волн на диэлектрическом теле с поперечным сечением сложной геометрии и к задаче дифракции на сфере Януса в виде проницаемого шара, частично покрытого абсолютно мягким или абсолютно жёстким сферическим экраном. Получены результаты расчёта диаграммы рассеяния для большого набора тел разной геометрии, в том числе фракталоподобных рассеивателей. Проиллюстрировано, что в случае гладкой границы тела алгоритм на основе уравнений Фредгольма 1-го рода позволяет получать результаты с большей точностью, чем для уравнений 2-го рода. Корректность метода подтверждена при помощи проверки выполнения оптической теоремы для различных тел и путём сравнения с результатами расчётов, полученных другими методами.

Об авторах

Д. В. Крысанов

Московский технический университет связи и информатики

Автор, ответственный за переписку.
Email: d.v.krysanov@mtuci.ru
ORCID iD: 0000-0001-5100-3007

postgraduate student of Department of Probability Theory and Applied Mathematics

ул. Авиамоторная, д. 8а, Москва, 111024, Россия

Список литературы

  1. A. G. Kyurkchan and A. P. Anyutin, “The method of continued boundary conditions and wavelets,” Doklady Mathematics, vol. 66, no. 1, pp. 132-135, 2002.
  2. A. G. Kyurkchan and A. P. Anyutin, “The well-posedness of the formulation of diffraction problems reduced to Fredholm integral equations of the first kind with a smooth kernel,” Journal of Communications Technology and Electronics, vol. 51, no. 7, pp. 48-51, 2006. doi: 10.1134/S1064226906010062.
  3. M. I. Mishchenko, N. T. Zakharova, N. G. Khlebtsov, G. Videen, and T. Wriedt, “Comprehensive thematic T-matrix reference database: A 2015-2017 update,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 202, pp. 240-246, 2017. doi: 10.1016/j.jqsrt.2017.08.007.
  4. J. Zhang, B. A. Grzybowski, and S. Granick, “Janus particle synthesis, assembly, and application,” Langmuir, vol. 33, no. 28, pp. 6964-6977, 2017. doi: 10.1021/acs.langmuir.7b01123.
  5. M. Lattuada and T. A. Hatton, “Synthesis, properties and applications of Janus nanoparticles,” Nano Today, vol. 6, no. 3, pp. 286-308, 2011. doi: 10.1016/j.nantod.2011.04.008.
  6. D. Kim, E. J. Avital, and T. Miloh, “Sound scattering and its reduction by a Janus sphere type,” Advances in Acoustics and Vibration, vol. 2014, no. 392138, 2014. doi: 10.1155/2014/392138.
  7. A. Gillman, “An integral equation technique for scattering problems with mixed boundary conditions,” Advances in Computational Mathematics, vol. 43, no. 2, pp. 351-364, 2017. doi: 10.1007/s10444-016-9488-6.
  8. S. C. Hawkins, T. Rother, and J. Wauer, “A numerical study of acoustic scattering by Janus spheres,” The Journal of the Acoustical Society of America, vol. 147, no. 6, pp. 4097-4105, 2020. doi: 10.1121/10.0001472.
  9. T. Rother, Sound scattering on spherical objects. Heidelberg: Springer, 2020.
  10. A. G. Kyurkchan and N. I. Smirnova, Mathematical modeling in diffraction theory: based on a priori information on the analytical properties of the solution. Amsterdam: Elsevier, 2015.
  11. D. V. Krysanov, A. G. Kyurkchan, and S. A. Manenkov, “Application of the method of continued boundary conditions to the solution of the problem of wave diffraction on scatterers of complex geometry located in homogeneous and heterogeneous media,” Optics and Spectroscopy, vol. 128, no. 4, pp. 481-489, 2020. doi: 10.1134/S0030400X20040141.
  12. A. G. Kyurkchan and S. A. Manenkov, “Application of different orthogonal coordinates using modified method of discrete sources for solving a problem of wave diffraction on a body of revolution,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 113, no. 18, pp. 2368-2378, 2012. doi: 10.1016/j.jqsrt.2012.05.010.
  13. R. M. Crownover, Intoduction to fractals and chaos. Boston: Jones and Bartlett Publishers, 1995.
  14. A. G. Kyurkchan and S. A. Manenkov, “Solution of the problem of diffraction by a plane screen in a plane layered medium with the help of the method of continued boundary conditions,” Journal of Communications Technology and Electronics, vol. 65, no. 7, pp. 778-786, 2020. doi: 10.1134/S1064226920060200.
  15. D. V. Krysanov, A. G. Kyurkchan, and S. A. Manenkov, “Two approaches to solving the problem of diffraction on a Janus sphere,” Acoustical Physics, vol. 67, no. 2, pp. 108-119, 2021. doi: 10.1134/S1063771021020020.
  16. S. A. Manenkov, “A new version of the modified method of discrete sources in application to the problem of diffraction by a body of revolution,” Acoustical Physics, vol. 60, no. 2, pp. 127-133, 2014. doi: 10.1134/S1063771014010102.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».