🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Nonexistence of Positive Solutions to Semilinear Elliptic Inequalities for Polyharmonic Operator

Cover Page

Cite item

Full Text

Abstract

In this paper, we study the nonexistence of positive solution for some higher-order semilinear elliptic inequality particularly involving polyharmonic operator: Δku(x) ≥ x1 α1 x2 α2… xn αnuq(x), where k ∈ ℕ,q > 1, x = (x1,x2,…,xn) and αi ∈ ℝ,i = 1,2,…,n. The purpose of this paper is to establish conditions on values of αi,i = 1,2,…,n for the nonexistence of positive solution to this problem in a bounded and unbounded domain. The main tools are a priori estimates and integral inequalities. Using the test function method, we derive first a priori estimates for solutions of the inequality based on integral inequalities and on the weak formulation of the problem with an optimal choice of test functions and then we formulate the nonexistence condition of the solution of the problem. The choice of such functions is determined by the nonlinear characters of the problem and depends on the concept of solutions that we are dealing with.

About the authors

B B Tsegaw

Peoples’ Friendship University of Russia

Email: birilewb@yahoo.com
Department of Mathematical Analysis and Theory of Functions

Supplementary files

Supplementary Files
Action
1. JATS XML