Mathematical model of cavitation under the influence of a single stretching pulse

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

This paper describes the created mathematical model that allows you to explore the dynamics of cavitation bubbles under the influence of a single negative pressure pulse. The time dependence and coordinates of the parameters of the carrier phase, the temperature and pressure of the vapor phase, the concentration and size of the bubbles are determined numerically. It is concluded that the model created gives a good agreement between the calculated and experimental data.

Авторлар туралы

Nikolay Kravchenko

Peoples’ Friendship University of Russia (RUDN University)

Хат алмасуға жауапты Автор.
Email: kravchenko-nyu@rudn.ru

Deputy Director of Institute of Physical Research and Technology

6, Miklukho-Maklaya str., Moscow, 117198, Russian Federation

Dmitry Kulyabov

Peoples’ Friendship University of Russia (RUDN University)

Email: kulyabov-ds@rudn.ru

Doctor of Sciences in Physics and Mathematics, Full Professor, Department of Applied Probability and Informatics

6, Miklukho-Maklaya str., Moscow, 117198, Russian Federation

Әдебиет тізімі

  1. N. Yu. Kravchenko, M. M. Martynyuk, Dynamics of homogeneous cavitation bubbles in water under large amplitude pressure oscillations, Bulletin of Peoples’ Friendship University of Russia. Series: Physics 8 (2000) 118-121, in Russian.
  2. A. A. Aganina, M. A. Ilgamov, D. Yu. Toporkova, Dependence of vapor compression in cavitation bubbles in water and benzol on liquid pressure, Proceedings of Kazan University. Physics and Mathematics Series [Uchenye zapiski kazanskogo universiteta. Seriya fiziko-matematicheskie nauki] 158 (2) (2016) 231-242. URL http://mi.mathnet.ru/eng/uzku1365
  3. M. M. Martynyuk, N. Yu. Kravchenko, Limit of thermodynamic stability of a liquid phase in the field of nefative pressure [Granitsa termodinamicheskoy ustoychivosti zhidkoy fazy v oblasti otritsatel’nykh davleniy], Russian Journal of Physical Chemistry 72 (6) (1998) 998-1001, in Russian.
  4. P. A. Tamanga, M. M. Martynyuk, N. Yu. Kravchenko, Spinodal of liquid phase on basis of generalized berthelo’s equation, Bulletin of Peoples’ Friendship University of Russia. Series: Physics (9) (2001) 56-58, in Russian.
  5. N. Yu. Kravchenko, The numerical solution of the Rayleigh-Plisset equation for spark cavitation and calculation of the maximum temperature and pressure in a cavity, Journal of Mechanics of Continua and Mathematical Sciences (Special Issue-1) (2019) 465-473. doi: 10.26782/jmcms.2019.03.00046.
  6. E. V. Butyugina, E. S. Nasibullaeva, Numerical study of the gas diffusion process between clustered bubbles and technical fluids [Issledovaniye protsessa diffuzii gaza mezhdu puzyr’kom v klastere i tekhnicheskoy zhidkost’yu], News of the Ufa Scientific Center [Izvestiya UNTS RAN] (2) (2016) 15-21, in Russian.
  7. A. B. Kapranova, A. E. Lebedev, A. M. Meltser, S. V. Neklyudov, S. E. M., Methods of modeling the developmental stages of hydrodynamic cavitation, Fundamental Research [Fundamental’nyye issledovaniya] (3) (2016) 268-273, in Russian.
  8. Modelling of cavitation and bubble growth during ultrasonic cleaning process, in: T. Sile, J. Virbulis, A. Timuhins, J. Sennikovs, U. Bethers (Eds.), Proc. of International Scientific Colloquium Modelling for Material Processing, September 16-17, Riga, Latvia, 2010, pp. 329-334.
  9. E. V. Volkova, E. S. Nasibullaeva, N. A. Gumerov, Numerical simulations of soluble bubble dynamics in acoustic fields, in: Proc. of the ASME 2012 International Mechanical Engineering Congress & Exposition (IMECE 2012), Houston, Texas, USA, 2012, pp. 317-323, 1 CD ROM.
  10. A. A. Gubaydullin, A. C. Gubkin, Behavior of bubbles in cluster with acoustic exposure [Povedeniye puzyr’kov v klastere pri akusticheskom vozdeystvii], Modern Science. Researches, Ideas, Results, Technologies (1 (12)) (2013) 363-367, in Russian.
  11. E. V. Butyugina, E. S. Nasibullaeva, N. A. Gumerov, I. S. Akhatov, Numerical simulation of gas microbubble dynamics in an acoustic field with account for rectified diffusion [Chislennoye modelirovaniye dinamiki gazovogo mikropuzyr’ka v akusticheskom pole s uchetom protsessa napravlennoy diffuzii], Vychislitelnaya mekhanika sploshnykh sred 7 (3) (2014) 234-244, in Russian.
  12. R. P. Taleyarkhan, C. D. West, J. S. Cho, R. T. Lahey Jr., R. I. Nigmatulin, R. C. Block, Evidence for nuclear emissions during acoustic cavitation, Science 295 (2002) 1868-1873. doi: 10.1126/science.1067589.
  13. R. P. Taleyarkhan, C. D. West, R. T. Lahey Jr., R. I. Nigmatulin, R. C. Block, Y. Xu, Nuclear emissions during self-nucleated acoustic cavitation, Physical Review Letters 96 (2006). doi: 10.1103/PhysRevLett.96.034301.
  14. M. M. Martynyuk, N. Yu. Kravchenko, Nuclear fusion reaction in mataphase substance in the process of electrical explosion [Reaktsii yadernogo sinteza v mezofaznom veshchestve v protsesse elektricheskogo vzryva], Applied Physics (1) (2003) 79-90, in Russian.
  15. R. I. Nigmatulin, I. S. Akhatov, A. S. Topolnikov, R. K. Bolotnova, N. K. Vakhitova, R. T. Lahey Jr., R. P. Taleyarkhan, The theory of supercompression of vapor bubbles and nano-scale thermonuclear fusion, Phys. Fluids 17 (10) (2005) 1-31, art. 107106. doi: 10.1063/1.2104556.
  16. M. M. Martynyuk, N. Yu. Kravchenko, Impact-cluster nuclear fusion. Conditions of excitation of the process, Bulletin of Peoples’ Friendship University of Russia. Series: Physics (1) (2005) 118-128, in Russian.
  17. Determination of temperature and pressure within the cavitational cavity [Opredeleniye temperatury i davleniya vnutri kavitatsionnoy polosti], in Russian.
  18. M. M. Martynyuk, P. A. Tamanga, N. Yu. Kravchenko, The titanium phase diagram at the phase transition region liquid-vapor, Bulletin of Peoples’ Friendship University of Russia. Series: Physics (10) (2002) 121-125, in Russian.
  19. V. N. Khmelev, S. S. Khmelev, R. N. Golykh, G. A. Bobrova, O. N. Krasulja, V. I. Bogush, S. Anandan, Experimental determining of conditions of ultrasonic influence for providing maximum cavitation intensity in medium [Eksperimental’noye opredeleniye usloviy ul’trazvukovogo vozdeystviya dlya obespecheniya maksimal’noy intensivnosti kavitatsii v srede], Yuzhno- Sibirskiy nauchnyy vestnik (4 (12)) (2015) 50-55, in Russian.
  20. A. A. Aganin, Dynamics of a small bubble in a compressible fluid, International Journal for Numerical Methods in Fluids 33 (2) (2000) 157-174. doi: 10.1002/(SICI)1097-0363(20000530)33:2<157::AID- FLD6>3.0.CO;2-A.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML