Dual quaternion representation of points, lines and planes


Citar

Texto integral

Resumo

Background. The bulk of the work on dual quaternions is devoted to their application to describe helical motion. Little attention is paid to the representation of points, lines, and planes (primitives) using them. Purpose. It is necessary to consistently present the dual quaternion theory of the representation of primitives and refine the mathematical formalism. Method. It uses the algebra of dual numbers, quaternions and dual quaternions, as well as elements of the theory of screws and sliding vectors. Results. Formulas have been obtained and systematized that use exclusively dual quaternionic operations and notation to solve standard problems of three-dimensional geometry. Conclusions. Dual quaternions can serve as a full-fledged formalism for the algebraic representation of a three-dimensional projective space.

Sobre autores

Migran Gevorkyan

RUDN University

Email: gevorkyan-mn@rudn.ru
ORCID ID: 0000-0002-4834-4895
Scopus Author ID: 57190004380
Researcher ID: E-9214-2016

Docent, Ph.D. in Physics and Mathematics, Associate Professor of Department of Probability Theory and
Cyber Security

Rússia, 6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation

Nikita Vishnevskiy

RUDN University

Email: 1142240277@rudn.ru
ORCID ID: 0009-0004-4410-8635

PhD student of Department of Probability Theory and Cyber Security

Rússia, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Kirill Didus

RUDN University

Email: 1142240434@rudn.ru
ORCID ID: 0000-0002-5622-8480

PhD student of Department of Probability Theory and Cyber Security

Rússia, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Anna Korolkova

RUDN University

Email: korolkova-av@rudn.ru
ORCID ID: 0000-0001-7141-7610
Scopus Author ID: 36968057600
Researcher ID: I-3191-2013

Docent, Candidate of Sciences in Physics and Mathematics, Associate Professor of Department of Probability Theory and Cyber Security

Rússia, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Dmitry Kulyabov

RUDN University; Joint Institute for Nuclear Research

Autor responsável pela correspondência
Email: kulyabov_ds@pfur.ru
ORCID ID: 0000-0002-0877-7063
Scopus Author ID: 35194130800
Researcher ID: I-3183-2013

Professor, Doctor of Sciences in Physics and Mathematics, Professor of Department of Probability Theory and Cyber Security of RUDN University; Senior Researcher of Laboratory of Information Technologies, Joint Institute for Nuclear Research

Rússia, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; 6 Joliot-Curie St, Dubna, 141980, Russian Federation

Bibliografia

  1. Blaschke, W. J. E. Anwendung dualer Quaternionen auf Kinematik German (Suomalainen tiedeakatemia, Helsinki, 1958).
  2. Blaschke, W. J. E. Kinematics and Quaternions trans. from the German by Delphenich, D. H. Berlin, 1960. doi: 10.1002/zamm.19620420724.
  3. Kotelnikov, A. P. The Screw Calculus and Some of Its Applications to Geometry and Mechanics 222 pp. (Annals of the Imperial University of Kazan, Kazan, 1895).
  4. Farias, J. G., De Pieri, E. & Martins, D. A Review on the Applications of Dual Quaternions. Machines 12. doi: 10.3390/machines12060402 (2024).
  5. Dimentberg,F.M.TheScrewCalculusandItsApplicationsinMechanics 162pp.(ForeignTechnology Division, Springfield, 1969).
  6. Fischer, I. Dual-Number Methods in Kinematics, Statics and Dynamics 240 pp. (CRC Press, 1998).
  7. Huang, Z., Li, Q. & Ding, H. Basics of Screw Theory in Theory of Parallel Mechanisms (Springer Netherlands, Dordrecht, 2013). doi: 10.1007/978-94-007-4201-7_1.
  8. Featherstone, R. A Beginner’s Guide to 6-D Vectors (Part 1). IEEE Robotics and Automation Magazine 17, 83–94. doi: 10.1109/MRA.2010.937853 (2010).
  9. Featherstone, R. A Beginner’s Guide to 6-D Vectors (Part 2) [Tutorial]. IEEE Robotics and Automation Magazine 17, 88–99. doi: 10.1109/MRA.2010.939560 (2010).
  10. Kenwright, B. A Survey on Dual-Quaternions 2023. arXiv: 2303.14765 [math.OC].
  11. Thomas, F. Approaching Dual Quaternions From Matrix Algebra. IEEE Transactions on Robotics 30, 1–12. doi: 10.1109/TRO.2014.2341312 (Aug. 2014).
  12. Bruno, V. A. Robot Kinematic Modeling and Control Based on Dual Quaternion Algebra. Part I: Fundamentals working paper or preprint. https://hal.science/hal-01478225.
  13. Wang, X., Han, D., Yu, C. & Zheng, Z. The geometric structure of unit dual quaternion with application in kinematic control. Journal of Mathematical Analysis and Applications 389, 1352– 1364. doi: 10.1016/j.jmaa.2012.01.016 (2012).
  14. Bekar, M. & Yayli, Y. Kinematics of Dual Quaternion Involution Matrices. SDU Journal of Science 11, 121–132 (2016).
  15. Dantam, N. T. Practical Exponential Coordinates using Implicit Dual Quaternions (Workshop on the Algorithmic Foundations of Robotics, 2018).
  16. Chelnokov, Y. N. Quaternionic and biquaternionic models and methods of solid mechanics and their applications. Geometry and kinematics of motion 512 pp. (FIZMATLIT, Moscow, 2006).
  17. Dunn, F. & Parberry, I. 3D Math Primer for Graphics and Game Development 2nd ed. 846 pp. (CRC Press, 2011).
  18. Kuipers, J. B. Quaternions and rotation sequences a primer with applications to orbits, aerospace and virtual reality. 371 pp. (Princeton University Press, 41 William Street, Princeton, New Jersey 08540, 1999).
  19. Goldman, R. Rethinking Quaternions. Theory and Computation doi: 10.2200/S00292ED1V01Y201008CGR013 (Morgan & Claypool, 2010).
  20. Goldman, R. Dual Quaternions and Their Associated Clifford Algebras 279 pp. (CRC Press Taylor & Francis Group, Boca Raton, London, New York, 2024).
  21. Kotelnikov, A. P. The Screw Calculus and Some of Its Applications to Geometry and Mechanics 222 pp. (Annals of the Imperial University of Kazan, Kazan, 1895).
  22. Dimentberg,F.M.TheScrewCalculusandItsApplicationsinMechanics 162pp.(ForeignTechnology Division, Springfield, 1969).
  23. Kantor, I. L. & Solodownikow, A. S. Hyperkomplexe Zahlen German. 144 pp. (Teubner Verlagsgesellschaft, Leipzig, 1978).
  24. Dickson, L. E. On Quaternions and Their Generalization and the History of the Eight Square Theorem. Annals of Mathematics 20, 155–171 (1919).
  25. Dickson, L. E. Algebras and their arithmetics. Bulletin of the American Mathematical Society 30, 247–257 (1924).
  26. Gevorkyan, M. N., Korolkova, A. V., Kulyabov, D. S. & Sevastyanov, L. A. Analytic projective geometry for computer graphics. Discrete and Continuous Models and Applied Computational Science 33, 74–102 (2025).
  27. Goldman, R. An integrated introduction to computer graphics and geometric modeling 592 pp. (CRC Press Taylor & Francis Group, Boca Raton, London, New York, 2009).
  28. Faux, I. D. & Pratt, M. J. Computational Geometry for Design and Manufacture 304 pp. (New York, 1979).
  29. Lengyel, E. Projective Geometric Algebra Illuminated 294 pp. (Terathon Software LLC, 2024).
  30. Lengyel, E. Foundations of Game Engine Development. 1: Mathematics 4 vols. 195 pp. (Terathon Software LLC, Lincoln, California, 2016).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML