Finite Element Method of High-Order Accuracy for Solving Two Dimensional Elliptic Boundary-Value Problems of Two and Three Identical Atoms in a Line
- Autores: Gusev AA1
-
Afiliações:
- Laboratory of Information Technologies Joint Institute for Nuclear Research
- Edição: Volume 26, Nº 3 (2018)
- Páginas: 226-243
- Seção: Modeling and Simulation
- URL: https://journals.rcsi.science/2658-4670/article/view/328308
- DOI: https://doi.org/10.22363/2312-9735-2018-26-3-226-243
- ID: 328308
Citar
Texto integral
Resumo
We considered models of three identical atoms in a line with molecular pair interactions and diatomic molecule scattered by an atom or tunneling through potential barriers. The models are formulated as 2D elliptic boundary-value problems (BVPs) in the Jacobi and polar coordinates. The BVP in Jacobi coordinates solved by finite element method of high-order accuracy for discrete spectrums of models under consideration. To solve the scattering problems the BVP in polar coordinates are reduced by means of Kantorovich method to a system of second-order ordinary differential equations with respect to the radial variable using the expansion of the desired solutions in the set of angular basis functions that depend on the radial variable as a parameter. The efficiency of the elaborated method, algorithms and programs is demonstrated by benchmark calculations of the resonance scattering, metastable and bound states of the considered models and also by a comparison of results for bound states of the three atomic system in the framework of direct solving the BVP by FEM and Kantorovich reduction.
Sobre autores
A Gusev
Laboratory of Information Technologies Joint Institute for Nuclear Research
Autor responsável pela correspondência
Email: gooseff@jinr.ru
Candidate of Physical and Mathematical Sciences, senior researcher of Laboratory of Information Technologies Joint Institute for Nuclear Research 6, Joliot-Curie str., Dubna, Moscow region, Russia, 141980
Bibliografia
- P. Ciarlet, The Finite Element Method for Elliptic Problems, North-holland Publ. Comp, Amsterdam, 1978. doi: 10.1137/1.9780898719208.
- V. G. Korneev, Schemes of the Finite Element Method for High Orders of Accuracy, Leningrad State University, Leningrad, 1977, in Russian.
- A. A. Gusev, V. P. Gerdt, O. Chuluunbaatar, G. Chuluunbaatar, S. I. Vinitsky, V. L. Derbov, A. Go´´zd´z, Symbolic-Numerical Algorithm for Generating Interpolation Multivariate Hermite Polynomials of High-Accuracy Finite Element Method, Lecture Notes in Computer Science 10490 (2017) 134-150. doi: 10.1007/978-3-319-66320-3 11.
- A. A. Gusev, S. I. Vinitsky, O. Chuluunbaatar, G. Chuluunbaatar, V. P. Gerdt, V. L. Derbov, A. Go´´zd´z, P. M. Krassovitskiy, High-Accuracy Finite Element Method: Benchmark Calculations, European Physics Journal - Web of Conferences 173 (2018) 03009.
- A. A. Gusev, S. I. Vinitsky, O. Chuluunbaatar, G. Chuluunbaatar, V. P. Gerdt, V. L. Derbov, A. Go´´zd´z, P. M. Krassovitskiy, Interpolation Hermite Polynomials For Finite Element Method, European Physics Journal - Web of Conferences 173 (2018) 03010.
- A. A. Gusev, S. I. Vinitsky, O. Chuluunbaatar, G. Chuluunbaatar, V. P. Gerdt, V. L. Derbov, A. Go´´zd´z, P. M. Krassovitskiy, Algorithm for calculating interpolation hermite polynomials for high-accuracy finite element method, in: Computer Algebra: International Conference Materials, Plekhanov Russian University of Economics, 2017, pp. 89-95.
- A. A. Gusev, V. P. Gerdt, O. Chuluunbaatar, G. Chuluunbaatar, S. I. Vinitsky, V. L. Derbov, A. G´o´zd´z, Symbolic-Numerical Algorithms for Solving the Parametric SelfAdjoint 2D Elliptic Boundary-Value Problem Using High-Accuracy Finite Element Method, Lecture Notes in Computer Science 10490 (2017) 151-166. doi: 10.1007/9783-319-66320-3 12.
- A. A. Gusev, L. L. Hai, O. Chuluunbaatar, S. I. Vinitsky, Program KANTBP 4M for Solving Boundary-Value Problems for Systems of Ordinary Differential Equations of the Second Order. URL http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m
- A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky, A. G. Abrashkevich, KANTBP 3.0: New version of a Program for Computing Energy Levels, Reflection and Transmission Matrices, and Corresponding Wave Functions in the Coupled-Channel Adiabatic Approach, Computer Physics Communications 185 (2014) 3341-3343. doi: 10.1016/j.cpc.2014.08.002.
- O. Chuluunbaatar, A. A. Gusev, S. I. Vinitsky, A. G. Abrashkevich, ODPEVP: A Program for Computing Eigenvalues and Eigenfunctions and Their First Derivatives with Respect to the Parameter of the Parametric Self-Adjoined Sturm- Liouville Problem, Computer Physics Communications 180 (2009) 1358-1375. doi: 10.1016/j.cpc.2009.04.017.
- A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky, V. L. Derbov, Algorithms for Solving the Boundary-Value Problems for Atomic Trimers in Collinear Configuration using the Kantorovich Method, Bulletin of Peoples’ Friendship University of Russia. Series: Mathematics. Information Sciences. Physics (4) (2016) 56-76.
- J. F. Cornwell, Group Theory in Physics, Academic Press, New York, 1984.
- P. M. Krassovitskiy, F. M. Pen’kov, Contribution of Resonance Tunneling of Molecule to Physical Observables, Journal of Physics B: Atomic, Molecular and Optical Physics 47 (22) (2014) 225210. doi: 10.1088/0953-4075/47/22/225210.
- J. Wang, G. Wang, J. Zhao, Density Functional Study of Beryllium Clusters, with Gradient Correction, Journal of Physics: Condensed Matter 13 (33) (2001) L753-L758. doi: 10.1088/0953-8984/13/33/101.
- L. J. Lauhon, W. Ho, Direct Observation of the Quantum Tunneling of Single Hydrogen Atoms with a Scanning Tunneling Microscope, Physical Review Letters 85 (2000) 4566-4569. doi: 10.1103/PhysRevLett.85.4566.
- L. V. Kantorovich, V. I. Krylov, Approximate Methods of Higher Analysis, Wiley, New York, 1964.
- M. Abramovits, I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
- R. G. Newton, Analytic Properties of Radial Wave Functions, Journal of Mathematical Physics 1 (1960) 319-348. doi: 10.1063/1.1703680.
- A. A. Gusev, S. I. Vinitsky, O. Chuluunbaatar, V. L. Derbov, A. G´o´zd´z, P. M. Krassovitskiy, Metastable States of a Composite System Tunneling through Repulsive Barriers, Theoretical and Mathematical Physics 186 (2016) 21-40. doi: 10.1134/S0040577916010037.
- A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky, V. L. Derbov, A. G´o´zd´z, L. L. Hai, V. A. Rostovtsev, Symbolic-Numerical Solution of Boundary-Value Problems with Self-Adjoint Second-Order Differential Equation using the Finite Element Method with Interpolation Hermite Polynomials, Lecture Notes in Computer Science 8660 (2014) 138-154. doi: 10.1007/978-3-319-10515-4 11.
- I. V. Puzynin, T. L. Boyadjiev, S. I. Vinitsky, E. V. Zemlyanaya, T. P. Puzynina, O. Chuluunbaatar, Methods of Computational Physics for Investigation of Models of Complex Physical Systems, Physics of Particles and Nuclei 38 (2007) 70-116. doi: 10.1134/S1063779607010030.
- E. Pijper, A. Fasolino, Quantum Surface Diffusion of Vibrationally Excited Molecular Dimers, Journal of Chemical Physics 126 (2007) 014708. doi: 10.1063/1.2424699.
- A. V. Mitin, Unusual Chemical Bonding in the Beryllium Dimer and its Twelve Vibrational Levels, Chemical Physics Letters 682 (2017) 30-33. doi: 10.1016/j.cplett.2017.05.071.
- J. M. Merritt, V. E. Bondybey, M. C. Heaven, Beryllium Dimer-Caught in the Act of Bonding, Science 324 (2009) 1548-1551. doi: 10.1126/science.1174326.
Arquivos suplementares
