MAPLE программа для моделирования водородоподобных атомов в квантовой механике с неотрицательной функцией распределения
- Авторы: Зорин А.В.1, Третьяков Н.П.2,3
-
Учреждения:
- Российский университет дружбы народов
- Российская академия народного хозяйства и государственной службы при Президенте Российской федерации
- Российский государственный социальный университет
- Выпуск: Том 26, № 4 (2018)
- Страницы: 343-356
- Раздел: Математическое моделирование
- URL: https://journals.rcsi.science/2658-4670/article/view/329034
- DOI: https://doi.org/10.22363/2312-9735-2018-26-4-343-356
- ID: 329034
Цитировать
Полный текст
Аннотация
Предложена программа для реализации алгоритма аналитических вычислений, основанного на квантовой механике с неотрицательной функцией распределения вероятностей и для расчётов уровней энергии для водородоподобных атомов. Программа написана на языке MAPLE. В рамках алгоритма осуществляются вычисления необходимых функций, таких как волновые функции атома водорода, штурмовские функции и их фурье-преобразования, коэффициенты Клебша-Гордана и т. д. Операторы наблюдаемых вычисляются на основе правила квантования квантовой механики с неотрицательной функцией распределения. Согласно методу Ритца, собственные значения матриц Ритца представляют собой спектральные значения исследуемой величины, т. е. энергии. В качестве примера вычисляются энергетические уровни водородоподобных атомов и сравниваются с экспериментальными значениями, полученными из данных уровней базы данных NIST Atomic Spectra. Используемая теория, по-видимому, эквивалентна традиционной квантовой механике в отношении предсказаний экспериментальных значений. Однако существование вероятностной квантовой теории фазового пространства может быть важным шагом вперёд к объяснению и интерпретации квантовой механики.
Об авторах
Александр Валерьевич Зорин
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: zorin@mx.rudn.ru
доцент, кандидат физико-математических наук, доцент РУДН
ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198Николай Павлович Третьяков
Российская академия народного хозяйства и государственной службы при Президенте Российской федерации; Российский государственный социальный университет
Email: trn11@rambler.ru
доцент, кандидат физико-математических наук, доцент кафедры математики и информатики РГСУ
Проспект Вернадского, д. 82, Москва, Россия, 119571; ул. Вильгельма Пика, д. 4-1, Москва, Россия, 119571Список литературы
- W. Eissner, H. Nussbaumer, Resonances in Cross Sections for Excitation of Forbidden Lines in O2+, Journal of Physics B: Atomic, Molecular and Optical Physics 2 (3) (1969) 1028-1043. doi: 10.1088/0022-3700/2/3/305.
- J. C. Slater, Atomic Shielding Constants, Physical Review 36 (1930) 57-64. doi: 10.1103/PhysRev.36.57.
- G. H. S. E. U. Condon, The Theory of Atomic Spectra, Cambridge University Press, Cambridge, 1970.
- D. Layzer, On a Screening Theory of Atomic Spectra, Annals of Physics 8 (1959) 271-296. doi: 10.1016/0003-4916(59)90023-5.
- H. Nussbaumer, Improved Bound Wave Functions for Complex Atoms, Journal of Physics B: Atomic, Molecular and Optical Physics 5 (10) (1972) 1837-1843. doi: 10.1088/0022-3700/5/10/012.
- P. G. Burke, A. Hibbert, W. D. Robb, Wavefunctions and Oscillator Strengths of the Beryllium Iso-Electronic Sequence, Journal of Physics B: Atomic, Molecular and Optical Physics 5 (1) (1972) 37-43. doi: 10.1088/0022-3700/5/1/013.
- R. N. Zare, Correlation Effects in Complex Spectra. II. Transition Probabilities for the Magnesium Isoelectronic Sequence, Journal of Chemical Physics 47 (1967) 3561-72. doi: 10.1063/1.1712423.
- A. W. Weiss, Theoretical multiplet strengths for Mg I, Al II, and Si III, Journal of Chemical Physics 47 (1967) 3573-3578. doi: 10.1063/1.1712424.
- H. Friedrich, E. Trefftz, Configuration Mixing and Oscillator Strengths for Some Two-Electron Spectra (Ca I, Ba I, and Others), Journal of Quantitative Spectroscopy and Radiative Transfer 9 (1969) 333-359. doi: 10.1016/0022-4073(69)90030-2.
- Y.-K. Kim, P. S. Bagus, Oscillator Strengths for the Resonance Transitions in Alkaline Earth Atoms, Journal of Physics B: Atomic, Molecular and Optical Physics 5 (10) (1972) L193-L195. doi: 10.1088/0022-3700/5/10/001.
- S. Hameed, A. Herzenberg, M. G. James, Core Polarization Corrections to Oscillator Strengths in the Alkali Atoms, Journal of Physics B: Atomic, Molecular and Optical Physics 1 (5) (1968) 822-830. doi: 10.1088/0022-3700/1/5/308.
- S. Hameed, Core Polarization Corrections to Oscillator Strengths and Singlet-Triplet Splittings in Alkaline Earth Atoms, Journal of Physics B: Atomic, Molecular and Optical Physics 9 (4) (1972) 746-760. doi: 10.1088/0022-3700/5/4/009.
- M. Jones, Relativistic Corrections to Atomic Energy Levels, Journal of Physics B: Atomic, Molecular and Optical Physics 3 (12) (1972) 1571-1592. doi: 10.1088/00223700/3/12/003.
- M. Jones, Mutual Spin-Orbit and Spin-Spin Interactions in Atomic Structure Calculations, Journal of Physics B: Atomic, Molecular and Optical Physics 4 (11) (1971) 1422-1439. doi: 10.1088/0022-3700/4/11/006.
- W. Eissner, M. Jones, H. Nussbaumer, Techniques for the Calculation of Atomic Structures and Radiative Data Including Relativistic Corrections, Computer Physics Communications 8 (1974) 270-306. doi: 10.1016/0010-4655(74)90019-8.
- S. E. Frisch, Optical Atomic Spectrs, Fizmatgiz, Moscow, 1963, in Russian.
- M. G. Veselov, L. N. Labzovski, Theory of Atom. Structure of Electron Scells, Nauka, Moscow, 1986, in Russian.
- I. I. Sobelman, Atomic Spectra and Radiative Transitions, 2nd Edition, Springer, Berlin, 1996.
- A. V. Zorin, A. L. Sevastianov, L. A. Sevastianov, Application of the Noncommutative Theory of Statistical Decisions to the Modeling of Quantum Communication Channels, IEEE, 2017, pp. 26-31. doi: 10.1109/ICUMT.2017.8255195.
- V. V. Kuryshkin, La mechanique quantique avec une function nonnegative de distribution dans l’espace des phases, Annales de l’I.H.P. Physique th´eorique 17 (1972) 81-95.
- V. V. Kuryshkin, Some Problems of Quantum Mechanics Possessing a Non-Negative Phase-Space Distribution Function, International Journal of Theoretical Physics 7 (1973) 451-466. doi: 10.1007/BF00713247.
- A. V. Gorbachev, L. A. Sevastianov, A. V. Zorin, Kuryshkin-Wodkiewicz Model of Quantum Measurements for Atoms and Ions with One Valence Electron, Bulletin of Peoples’ Friendship University of Russia. Series: Mathematics. Information Sciences. Physics 2 (2016) 44-52.
- A. V. Zorin, V. V. Kuryshkin, L. A. Sevastianov, Description of the Spectrum of a Hydrogen-Like Atom, Bulletin of Peoples’ Friendship University of Russia. Series: Physics 6 (1998) 62-66, in Russian.
- A. V. Zorin, L. A. Sevastianov, Hydrogen-Like Atom with Nonnegative Quantum Distribution Function, Physics of Atomic Nuclei 70 (2007) 792-799. doi: 10.1134/S1063778807040229.
- L. Sevastianov, A. Zorin, A. Gorbachev, Pseudo-Differential Operators in the Operational Model of a Quantum Measurement of Observables, Lecture Notes in Computer Science 7152 (2012) 174-181. doi: 10.1007/978-3-642-28212-6 17.
- A. V. Zorin, The Operational Model of Quantum Measurement of Kuryshkin- Wodkiewicz, Bulletin of Peoples’ Friendship University of Russia. Series: Mathematics. Information Sciences. Physics 2 (2012) 42-54, in Russian.
- A. V. Zorin, L. A. Sevastianov, N. P. Tretyakov, Computer Modelling of Hydrogen-Like Atoms in Quantum Mechanics with Nonnegative Distribution Function, Programming and Computer Software 33 (2007) 94-104. doi: 10.1134/S0361768807020077.
- L. A. Sevastianov, A. V. Zorin, The Computer-Based Model of Quantum Measurement, Physics of Atomic Nuclei 80 (2017) 774-780. doi: 10.1134/S1063778817040238.
- M. Rotenberg, Theory and Application of Sturmian Functions, Advances in Atomic and Molecular Physics 6 (1970) 233-268. doi: 10.1016/S0065-2199(08)60206-7.
- K. Rykhlinskaya, S. Fritzsche, Use of Group Theory for the Analysis of Vibrational Spectra, Computer Physics Communications 162 (2004) 124-142. doi: 10.1016/j.cpc.2004.06.088.
- K. Rykhlinskaya, S. Fritzsche, Generation of Molecular Symmetry Orbitals for the Point and Double Groups, Computer Physics Communications 171 (2005) 119-132. doi: 10.1016/j.cpc.2005.03.112.
- K. Rykhlinskaya, S. Fritzsche, Generation of Clebsch-Gordan Coefficients for the Point and Double Groups, Computer Physics Communications 174 (2006) 903-913. doi: 10.1016/j.cpc.2006.01.001.
- O. Gaigalas, O. Scharf, S. Fritzsche, Maple Procedures for the Coupling of Angular Momenta. VIII. Spin-Angular Coefficients for Single-Shell Configurations, Computer Physics Communications 166 (2005) 141-169. doi: 10.1016/j.cpc.2004.11.003.
Дополнительные файлы
