MAPLE program for modelling hydrogen-like atoms in quantum mechanics with non-negative distribution function


Cite item

Full Text

Abstract

The program is proposed for a realization of the symbolic algorithm based on the quantum mechanics with non-negative probability distribution function (QDF) and for calculations of energy levels for hydrogen-like atoms. The program is written up in the language MAPLE. In the framework of the algorithm an original Maple package for calculations of necessary functions, such as hydrogen wave functions, Sturmian functions and their Fourier-transforms, Clebsch-Gordan coefficients, etc. is proposed. Operators of observables are calculated on the basis of the QDF quantization rule. According to the Ritz method, eigenvalues of Ritz matrices represent spectral values of the quantity under investigation, i.e. energy. As an example, energy levels of hydrogen-like atoms are calculated and compared with experimental data retrieved from the NIST Atomic Spectra Database Levels Data. It turns out that this theory seems to be equivalent to the traditional quantum mechanics in regard to predictions of experimental values. However, the existence of a phase-space probabilistic quantum theory may be an important advance towards the explanation and interpretation of quantum mechanics.

About the authors

Alexander V Zorin

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: zorin@mx.rudn.ru

Associate Professor, Candidate of Sciences in Physics and Mathematics, Associate Professor of Peoples’ Friendship University of Russia (RUDN University)

6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation

Nikolay P Tretyakov

The Russian Presidential Academy of National Economy and Public Administration; Russian State Social University

Email: trn11@rambler.ru

Associate Professor, Candidate of Sciences in Physics and Mathematics, Associate Professor of Department of Mathematics and Information Technologies of Russian State Social University

Prospect Vernadskogo, 82, Moscow 119571, Russian Federation; Wilhelm Pieck str., 4-1, Moscow, 119571, Russian Federation

References

  1. W. Eissner, H. Nussbaumer, Resonances in Cross Sections for Excitation of Forbidden Lines in O2+, Journal of Physics B: Atomic, Molecular and Optical Physics 2 (3) (1969) 1028-1043. doi: 10.1088/0022-3700/2/3/305.
  2. J. C. Slater, Atomic Shielding Constants, Physical Review 36 (1930) 57-64. doi: 10.1103/PhysRev.36.57.
  3. G. H. S. E. U. Condon, The Theory of Atomic Spectra, Cambridge University Press, Cambridge, 1970.
  4. D. Layzer, On a Screening Theory of Atomic Spectra, Annals of Physics 8 (1959) 271-296. doi: 10.1016/0003-4916(59)90023-5.
  5. H. Nussbaumer, Improved Bound Wave Functions for Complex Atoms, Journal of Physics B: Atomic, Molecular and Optical Physics 5 (10) (1972) 1837-1843. doi: 10.1088/0022-3700/5/10/012.
  6. P. G. Burke, A. Hibbert, W. D. Robb, Wavefunctions and Oscillator Strengths of the Beryllium Iso-Electronic Sequence, Journal of Physics B: Atomic, Molecular and Optical Physics 5 (1) (1972) 37-43. doi: 10.1088/0022-3700/5/1/013.
  7. R. N. Zare, Correlation Effects in Complex Spectra. II. Transition Probabilities for the Magnesium Isoelectronic Sequence, Journal of Chemical Physics 47 (1967) 3561-72. doi: 10.1063/1.1712423.
  8. A. W. Weiss, Theoretical multiplet strengths for Mg I, Al II, and Si III, Journal of Chemical Physics 47 (1967) 3573-3578. doi: 10.1063/1.1712424.
  9. H. Friedrich, E. Trefftz, Configuration Mixing and Oscillator Strengths for Some Two-Electron Spectra (Ca I, Ba I, and Others), Journal of Quantitative Spectroscopy and Radiative Transfer 9 (1969) 333-359. doi: 10.1016/0022-4073(69)90030-2.
  10. Y.-K. Kim, P. S. Bagus, Oscillator Strengths for the Resonance Transitions in Alkaline Earth Atoms, Journal of Physics B: Atomic, Molecular and Optical Physics 5 (10) (1972) L193-L195. doi: 10.1088/0022-3700/5/10/001.
  11. S. Hameed, A. Herzenberg, M. G. James, Core Polarization Corrections to Oscillator Strengths in the Alkali Atoms, Journal of Physics B: Atomic, Molecular and Optical Physics 1 (5) (1968) 822-830. doi: 10.1088/0022-3700/1/5/308.
  12. S. Hameed, Core Polarization Corrections to Oscillator Strengths and Singlet-Triplet Splittings in Alkaline Earth Atoms, Journal of Physics B: Atomic, Molecular and Optical Physics 9 (4) (1972) 746-760. doi: 10.1088/0022-3700/5/4/009.
  13. M. Jones, Relativistic Corrections to Atomic Energy Levels, Journal of Physics B: Atomic, Molecular and Optical Physics 3 (12) (1972) 1571-1592. doi: 10.1088/00223700/3/12/003.
  14. M. Jones, Mutual Spin-Orbit and Spin-Spin Interactions in Atomic Structure Calculations, Journal of Physics B: Atomic, Molecular and Optical Physics 4 (11) (1971) 1422-1439. doi: 10.1088/0022-3700/4/11/006.
  15. W. Eissner, M. Jones, H. Nussbaumer, Techniques for the Calculation of Atomic Structures and Radiative Data Including Relativistic Corrections, Computer Physics Communications 8 (1974) 270-306. doi: 10.1016/0010-4655(74)90019-8.
  16. S. E. Frisch, Optical Atomic Spectrs, Fizmatgiz, Moscow, 1963, in Russian.
  17. M. G. Veselov, L. N. Labzovski, Theory of Atom. Structure of Electron Scells, Nauka, Moscow, 1986, in Russian.
  18. I. I. Sobelman, Atomic Spectra and Radiative Transitions, 2nd Edition, Springer, Berlin, 1996.
  19. A. V. Zorin, A. L. Sevastianov, L. A. Sevastianov, Application of the Noncommutative Theory of Statistical Decisions to the Modeling of Quantum Communication Channels, IEEE, 2017, pp. 26-31. doi: 10.1109/ICUMT.2017.8255195.
  20. V. V. Kuryshkin, La mechanique quantique avec une function nonnegative de distribution dans l’espace des phases, Annales de l’I.H.P. Physique th´eorique 17 (1972) 81-95.
  21. V. V. Kuryshkin, Some Problems of Quantum Mechanics Possessing a Non-Negative Phase-Space Distribution Function, International Journal of Theoretical Physics 7 (1973) 451-466. doi: 10.1007/BF00713247.
  22. A. V. Gorbachev, L. A. Sevastianov, A. V. Zorin, Kuryshkin-Wodkiewicz Model of Quantum Measurements for Atoms and Ions with One Valence Electron, Bulletin of Peoples’ Friendship University of Russia. Series: Mathematics. Information Sciences. Physics 2 (2016) 44-52.
  23. A. V. Zorin, V. V. Kuryshkin, L. A. Sevastianov, Description of the Spectrum of a Hydrogen-Like Atom, Bulletin of Peoples’ Friendship University of Russia. Series: Physics 6 (1998) 62-66, in Russian.
  24. A. V. Zorin, L. A. Sevastianov, Hydrogen-Like Atom with Nonnegative Quantum Distribution Function, Physics of Atomic Nuclei 70 (2007) 792-799. doi: 10.1134/S1063778807040229.
  25. L. Sevastianov, A. Zorin, A. Gorbachev, Pseudo-Differential Operators in the Operational Model of a Quantum Measurement of Observables, Lecture Notes in Computer Science 7152 (2012) 174-181. doi: 10.1007/978-3-642-28212-6 17.
  26. A. V. Zorin, The Operational Model of Quantum Measurement of Kuryshkin- Wodkiewicz, Bulletin of Peoples’ Friendship University of Russia. Series: Mathematics. Information Sciences. Physics 2 (2012) 42-54, in Russian.
  27. A. V. Zorin, L. A. Sevastianov, N. P. Tretyakov, Computer Modelling of Hydrogen-Like Atoms in Quantum Mechanics with Nonnegative Distribution Function, Programming and Computer Software 33 (2007) 94-104. doi: 10.1134/S0361768807020077.
  28. L. A. Sevastianov, A. V. Zorin, The Computer-Based Model of Quantum Measurement, Physics of Atomic Nuclei 80 (2017) 774-780. doi: 10.1134/S1063778817040238.
  29. M. Rotenberg, Theory and Application of Sturmian Functions, Advances in Atomic and Molecular Physics 6 (1970) 233-268. doi: 10.1016/S0065-2199(08)60206-7.
  30. K. Rykhlinskaya, S. Fritzsche, Use of Group Theory for the Analysis of Vibrational Spectra, Computer Physics Communications 162 (2004) 124-142. doi: 10.1016/j.cpc.2004.06.088.
  31. K. Rykhlinskaya, S. Fritzsche, Generation of Molecular Symmetry Orbitals for the Point and Double Groups, Computer Physics Communications 171 (2005) 119-132. doi: 10.1016/j.cpc.2005.03.112.
  32. K. Rykhlinskaya, S. Fritzsche, Generation of Clebsch-Gordan Coefficients for the Point and Double Groups, Computer Physics Communications 174 (2006) 903-913. doi: 10.1016/j.cpc.2006.01.001.
  33. O. Gaigalas, O. Scharf, S. Fritzsche, Maple Procedures for the Coupling of Angular Momenta. VIII. Spin-Angular Coefficients for Single-Shell Configurations, Computer Physics Communications 166 (2005) 141-169. doi: 10.1016/j.cpc.2004.11.003.

Supplementary files

Supplementary Files
Action
1. JATS XML