О нормальных модах закрытого волновода с разрывным заполнением


Цитировать

Полный текст

Аннотация

Рассматривается волновод постоянного поперечного сечения S с идеальным проведением стенками. Предполагается, что заполнение волновода не изменяется вдоль его оси и описывается кусочными непрерывными функциями ε и μ на поперечном сечении волновода. Показано, что возможно сделать замену переменных, которая позволяет работать только с непрерывными функциями. Вместо разрывных поперечных компонент электромагнитного поля E и H мы предлагаем использовать четыре потенциала ue,uh и ve,vh. Мы можем доказать как обобщение теоремы Тихонова—Самарского, что любое поле в волноводе допускает представление в такой форме, если мы рассматриваем потенциалы ue,uh как элементы пространства Соболева W21(S), а потенциалы ve,vh, как элементы пространства Соболева W21(S). Если ε и μ- кусочные постоянные функции, то уравнения Максвелла, записанные в четырёх потенциалах, сводятся к двум независимым системам. Это обстоятельство даёт нам новый подход к исследованию спектральных свойств волноводов. Во-первых, мы можем доказать полноту системы нормальных волн в закрытых волноводах, используя стандартные функциональные пространства. Во-вторых, мы можем предложить новую технику для вычисления нормальных волн, используя стандартные конечные элементы. В конце статьи представлена программа, написанная на языке FreeFem++, для вычисления дисперсионных линий волновода. Также рассмотрен вопрос о вычислении мод при больших значениях k=ω/c.

Об авторах

Михаил Дмитриевич Малых

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: malykh-md@rudn.ru

кандидат физико-математических наук, доцент кафедры прикладной информатики и теории вероятностей РУДН

ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198

Список литературы

  1. A. A. Samarskiy, A. N. Tikhonov, On the Representation of a Field in a Waveguide in the Form of a Sum of Fields TE and TM, Technical Physics. The Russian Journal of Applied Physics [Zhurnal tekhnicheskoy fiziki] 18 (7) (1948) 959–970, in Russian.
  2. K. Zhang, D. Li, Electromagnetic Theory for Microwaves and Optoelectronics. 2nd ed., Springer, Berlin, 2008.
  3. I. E. Mogilevskii, A. G. Sveshnikov, Mathematical Problems of the Theory of Diffraction, Faculty of Physics MSU, Moscow, 2010, in Russian.
  4. A. N. Bogolyubov, A. L. Delicyn, A. G. Sveshnikov, On the problem of the Excitation of a Waveguide with an Inhomogeneous Medium, Computational Mathematics and Mathematical Physics 38 (11) (1999) 1815–1823.
  5. A. L. Delicyn, On One Approach to the Question of the Completeness of Normal Waves of a Waveguide with a Magnetodielectric Filling, Differentsialnye Uravneniya 36 (5) (2000) 629–633, in Russian.
  6. A. N. Bogolyubov, A. L. Delicyn, M. D. Malykh, On the Root Vectors of a Cylindrical Waveguide, Computational Mathematics and Mathematical Physics 41 (1) (2001) 121–124, in Russian.
  7. A. L. Delicyn, On the Completeness of the System of Eigenvectors of Electromagnetic Waveguides, Computational Mathematics and Mathematical Physics 51 (10) (2011) 1771–1776.
  8. A. L. Delicyn, Application of the Finite Element Method to the Calculation of Modes of Dielectric Waveguides, Computational Mathematics and Mathematical Physics 39 (2) (1999) 298–304, in Russian.
  9. A. L. Delicyn, S. I. Kruglov, Application of a Method of the Mixed Finite Elements for Calculation of Modes of Cylindrical Waveguides with Variable Index of Refraction, Journal of radio electronics (4), in Russian.
  10. E. Lezar, D. B. Davidson, Electromagnetic Waveguide Analysis, in: Automated solution of differential equations by the finite element method, The FEniCS Project, 2011, pp. 629–643, in Russian.
  11. V. C. Coffey, Novel Fibers Use Space to Extend Capacity Limits, Photonics Spectra 4 (7), in Russian.
  12. D. V. Divakov, M. D. Malykh, A. L. Sevastianov, L. A. Sevastianov, Simulation of Polarized Light Propagation in the Thin-Film Waveguide Lens, RUDN Journal of Mathematics, Information Sciences and Physics 25 (1) (2017) 56–68, in Russian.
  13. M. D. Malykh, L. A. Sevastianov, A. A. Tiutiunnik, N. E. Nikolaev, On the Representation of Electromagnetic Fields in Closed Waveguides Using Four Scalar Potentials, Journal of Electromagnetic Waves and Applications 32 (7) (2018) 886–898.
  14. M. D. Malykh, A. L. Sevastianov, L. A. Sevastianov, A. A. Tyutyunnik, On the Reduction of Maxwell’s Equations in Waveguidesto the System of Coupled Helmholtz Equations, RUDN Journal of Mathematics, Information Sciences and Physics 26 (1) (2018) 39–48, in Russian.
  15. A. A. Tyutyunnik, On the Calculation of Electromagnetic Fields in Closed Waveguides with Inhomogeneous Filling, RUDN Journal of Mathematics, Information Sciences and Physics 26 (2) (2018) 129–139, in Russian.
  16. F. Hecht, New Development in FreeFem++, J. Numer. Math. 20 (3–4) (2012) 251–265.
  17. J. Love, Theory of Elasticity, GTTI, 1939, in Russian.
  18. G. Duvaut, J.-L. Lions, Les in´equations en m´ecanique et en physique, Dunod, Paris, 1972.
  19. F. Stummel, Randund Eigenwertaufgaben in Sobolewschen R¨aumen, Springer, Berlin-Heidelberg-New York, 1969.
  20. W. C. Chew, Lectures on Theory of Microwave and Optical Waveguides (2012). URL http://wcchew.ece.illinois.edu/chew/course/tgwAll20121211.pdf
  21. V. M. Babich, V. S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods, Springer, Berlin, 1991.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).