Вычислительные схемы для решения задачи Штурма-Лиувилля методом конечных элементов с интерполяционными полиномами Эрмита

Обложка
  • Авторы: Гусев А.А.1, Хай Л.Л.2
  • Учреждения:
    1. Объединённый институт ядерных исследований ул. Жолио-Кюри
    2. Белгородский государственный национальный исследовательский университет
  • Выпуск: № 4 (2014)
  • Страницы: 33-49
  • Раздел: Статьи
  • URL: https://journals.rcsi.science/2658-4670/article/view/328448
  • ID: 328448

Цитировать

Полный текст

Аннотация

Построены вычислительные схемы решения задачи Штурма-Лиувилля с однородными краевыми условиями первого, второго и третьего рода методом конечных элементов, сохраняющие в приближённых решениях свойства непрерывности производных искомых решений. Выведены рекуррентные соотношения для вычисления в аналитическом виде интерполяционных полиномов Эрмита с узлами произвольной кратности. Из интерполяционных полиномов Эрмита сконструированы базисные кусочно-полиномиальные функции на конечноэлементной сетке с переменным шагом, аппроксимирующие решение исходной задачи. Исходная задача Штурма-Лиувилля в базисе кусочно полиномиальных функций редуцируется к обобщённой алгебраической задаче на собственные значения с ленточными матрицами жёсткости и масс. Построены матрицы жёсткости и масс в виде сумм интегралов, содержащих заданные коэффициентные и потенциальные функции исходного самосопряжённого дифференциального уравнения и вычисленные интерполяционные полиномы Эрмита и их производные. Интегрирование выполняется с помощью гауссовых квадратур, а в специальных случаях, включающих кусочно-полиномиальные коэффициентные и потенциальные функции, в аналитическом виде. Эффективность и скорость сходимости предложенных вычислительных схем и разработанных алгоритмов и программ в среде Maple-Fortran доказана численным анализом тестовых расчётов точно решаемых задач Штурма-Лиувилля с непрерывными и кусочно-непрерывными потенциальными функциями.

Об авторах

Александр Александрович Гусев

Объединённый институт ядерных исследований ул. Жолио-Кюри

Email: gooseff@jinr.ru
Лаборатория информационных технологий

Лыонг Ле Хай

Белгородский государственный национальный исследовательский университет

Email: luonglehai_tcl@yahoo.com.vn

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).