Solution of a two-dimensional time-dependent Schrödinger equation describing two interacting atoms in an optical trap

Cover Page

Cite item

Full Text

Abstract

We introduce a numerical method to solve the two-dimensional time-dependent Schrödinger equation, which characterizes a system of two atoms with a finite-range interaction potential confined within a harmonic oscillator trap. We choose a Gaussian-shaped potential for the interaction potential. Such a system has been previously studied analytically, except that a zero-range interaction potential was used instead. We observe a strong agreement between the results for the two types of interactions. Also, we investigate the one-dimensional time-dependent Schrödinger equation for the relative motion and compute the ground state energy level as a function of the coupling strength.

About the authors

I. S. Ishmukhamedov

Institute of Nuclear Physics; Al-Farabi Kazakh National University

Author for correspondence.
Email: i.ishmukhamedov@mail.ru
ORCID iD: 0000-0002-7903-3432

Candidate of Physical and Mathematical Sciences

Almaty, 050032, Kazakhstan; Almaty, 050040, Kazakhstann

A. S. Ishmukhamedov

Institute of Nuclear Physics; Al-Farabi Kazakh National University

Email: altaymedoed@gmail.com
ORCID iD: 0000-0001-5248-3022

Researcher

Almaty, 050032, Kazakhstan; Almaty, 050040, Kazakhstann

Zh. E. Jalankuzov

Institute of Nuclear Physics; Al-Farabi Kazakh National University

Email: jalankuzov.zhanibek@gmail.com
ORCID iD: 0009-0003-1962-8834

Researcher

Almaty, 050032, Kazakhstan; Almaty, 050040, Kazakhstann

References

  1. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008).
  2. Serwane, F., Zürn, G., Lompe, T., Ottenstein, T. B., Wenz, A. N. & Jochim, S. Deterministic preparation of a tunable few-fermion system. Science 332, 336 (2011).
  3. Zürn, G., Serwane, F., Lompe,T.,Wenz, A. N., Ries, M. G., Bohn, J. E. & Jochim, S. Fermionization of Two Distinguishable Fermions. Phys. Rev. Lett. 108, 075303 (2012).
  4. Melezhik, V. S., Kim, J. I. & Schmelcher, P. Wave-packet dynamical analysis of ultracold scattering in cylindrical waveguides. Phys. Rev. A 76, 053611 (2007).
  5. Melezhik, V. S. & Schmelcher, P. Quantum dynamics of resonant molecule formation in waveguides. New J. Phys. 11, 073031 (2009).
  6. Kościk, P. On the Exponential Decay of Strongly Interacting Cold Atoms from a Double-Well Potential. Few-Body Syst. 64, 11 (2023).
  7. Kościk, P. & Sowiński, T. Universality of Internal Correlations of Strongly Interacting p-Wave Fermions in One-Dimensional Geometry. Phys. Rev. Lett. 130, 253401 (2023).
  8. Dobrzyniecki, J. & Sowiński, T. Two Rydberg-dressed atoms escaping from an open well. Phys. Rev. A 103, 013304 (2021).
  9. Bougas, G., Mistakidis, S. I., Giannakeas, P. & Schmelcher, P. Dynamical excitation processes and correlations of three-body two-dimensional mixtures. Phys. Rev. A 106, 043323 (2022).
  10. Bougas, G., Mistakidis, S. I., Giannakeas, P. & Schmelcher, P. Few-body correlations in twodimensional Bose and Fermi ultracold mixtures. New J. Phys. 23, 093022 (2021).
  11. Gharashi, S. E. & Blume, D. Tunneling dynamics of two interacting one-dimensional particles. Phys. Rev. A. 92, 033629 (2015).
  12. Kestner, J. P. & Duan, L. M. Anharmonicity-induced resonances for ultracold atoms and their detection. New J. Phys. 12, 053016 (2010).
  13. Busch, T., Englert, B.-G., Rzażewski, K. & Wilkens, M. Two Cold Atoms in a Harmonic Trap. Found. Phys. 28, 549 (1998).
  14. Murphy, D. S., McCann, J. F., Goold, J. & Busch, T. Boson pairs in a one-dimensional split trap. Phys. Rev. A 76, 053616 (2007).
  15. Ishmukhamedov, I. S., Aznabayev, D. T. & Zhaugasheva, S. A. Two-body atomic system in a one-dimensional anharmonic trap: The energy spectrum. Phys. Part. Nucl. Lett. 12, 680 (2015).
  16. Ishmukhamedov, I. S. & Melezhik,V. S.Tunneling of two bosonic atoms from a one-dimensional anharmonic trap. Phys. Rev. A. 95, 062701 (2017).
  17. Ishmukhamedov, I. S. & Ishmukhamedov, A. S. Tunneling of two interacting atoms from excited states. Physica E 109, 24 (2019).
  18. Ishmukhamedov, I. S. Quench dynamics of two interacting atoms in a one-dimensional anharmonic trap. Physica E 142, 115228 (2022).
  19. Ishmukhamedov, I. S., Ishmukhamedov, A. S. & Melezhik, V. S. Numerical Solution of the Time Dependent 3D Schrödinger Equation Describing Tunneling of Atoms from Anharmonic Traps. EPJ Web Conf. 173, 03011 (2018).
  20. Ishmukhamedov, I. S., Ishmukhamedov, A. S., Jalankuzov, Z. E. & Ismailov, D. V. Molecular excited state in the interaction quench dynamics of two different atoms in a two-dimensional anisotropic trap. Eur. Phys. J. Plus 139, 53 (2024).
  21. Ishmukhamedov, I. S., Valiolda, D. S. & Zhaugasheva, S. A. Description of ultracold atoms in a one-dimensional geometry of a harmonic trap with a realistic interaction. Phys. Part. Nuclei Lett. 11, 238 (2014).

Supplementary files

Supplementary Files
Action
1. JATS XML