Symbolic algorithm for solving SLAEs with multi-diagonal coefficient matrices

Cover Page

Cite item

Full Text

Abstract

Systems of linear algebraic equations with multi-diagonal coefficient matrices may arise after many different scientific and engineering problems, as well as problems of the computational linear algebra where finding the solution of such a system of linear algebraic equations is considered to be one of the most important problems. This paper presents a generalised symbolic algorithm for solving systems of linear algebraic equations with multi-diagonal coefficient matrices. The algorithm is given in a pseudocode. A theorem which gives the condition for correctness of the algorithm is formulated and proven. Formula for the complexity of the multidiagonal numerical algorithm is obtained.

About the authors

Veneva Milena

Joint Institute for Nuclear Research; RIKEN Center for Computational Science, R-CCS

Author for correspondence.
Email: milena.p.veneva@gmail.com
ORCID iD: 0000-0002-6421-4716

Master of Sciences in Applied Mathematics

6 Joliot-Curie St, Dubna, Moscow Region, 141980, Russian Federation; 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan

References

  1. Spiteri, R. J. Notes in Numerical Analysis I. Chapter 2 (University of Saskatchewan, 2007).
  2. Christov, C. I. Gaussian elimination with pivoting for multidiagonal systems. University of Reading, Department of Mathematics, Numerical Analysis Report 5/94 (1994).
  3. El-Mikkawy, M. A Generalized Symbolic Thomas Algorithm. Applied Mathematics 3, 342-345. doi: 10.4236/am.2012.34052 (2012).
  4. Thomas, L. H. Elliptic Problems in Linear Difference Equations over a Network (Watson Sci. Comput. Lab. Rept., Columbia University, 1949).
  5. Higham, N. J. Accuracy and Stability of Numerical Algorithms 2nd ed. 710 pp. (SIAM, 2002).
  6. Samarskii, A. A. & Nikolaev, E. S. Metody Resheniya Setochnyh Uravnenii Russian (Nauka, 1978).
  7. Samarskii, A. A. & Nikolaev, E. S. Numerical Methods for Grid Equations. Direct Methods (Birkhäuser Basel, 1989).
  8. Karawia, A. A. & Rizvi, Q. M. On solving a general bordered tridiagonal linear system. International Journal of Mathematical Sciences 33 (2013).
  9. Atlan, F. & El-Mikkawy, M. A new symbolic algorithm for solving general opposite-bordered tridiagonal linear systems. American Journal of Computational Mathematics 5, 258-266. doi:10. 4236/ajcm.2015.53023 (2015).
  10. Askar, S. S. & Karawia, A. A. On Solving Pentadiagonal Linear Systems via Transformations. Mathematical Problems in Engineering. Hindawi Publishing Corporation. 9. doi: 10.1155/2015/232456 (2015).
  11. Jia, J.-T. & Jiang, Y.-L. Symbolic algorithm for solving cyclic penta-diagonal linear systems. Numerical Algorithms 63, 357-367. doi: 10.1007/s11075-012-9626-2 (2012).
  12. Karawia, A. A. A new algorithm for general cyclic heptadiagonal linear systems using Sherman-Morrisor-Woodbury formula. ARS Combinatoria 108, 431-443 (2013).
  13. Bernardin, L. e. a. Maple Programming Guide (Maplesoft, a division of Waterloo Maple Inc., 1996-2021.).
  14. Wolfram Research, I. System Modeler (Version 13.2, Champaign, IL, 2022).
  15. Higham, D. J. & Higham, N. J. MATLAB guide (SIAM, 2016).
  16. Veneva, M. & Ayriyan, A. Symbolic Algorithm for Solving SLAEs with Heptadiagonal Coefficient Matrices. Mathematical Modelling and Geometry 6, 22-29 (2018).
  17. Veneva, M. & Ayriyan, A. Performance Analysis of Effective Methods for Solving Band Matrix SLAEs after Parabolic Nonlinear PDEs in Advanced Computing in Industrial Mathematics, Revised Selected Papers of the 12th Annual Meeting of the Bulgarian Section of SIAM, December 20-22, 2017, Sofia, Bulgaria (Studies in Computational Intelligence, 2019), 407-419. doi: 10.1007/978-3-319-97277-0_33.
  18. Veneva, M. & Ayriyan, A. Effective Methods for Solving Band SLAEs after Parabolic Nonlinear PDEs. AYSS-2017, European Physics Journal - Web of Conferences (EPJ-WoC) 177 (2018).
  19. Veneva, M. & Ayriyan, A. Performance Analysis of Effective Symbolic Methods for Solving Band Matrix SLAEs in 23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018) 214 (European Physics Journal - Web of Conferences (EPJ-WoC), 2019).
  20. Kaye, R. & Wilson, R. Linear Algebra 242 pp. (Oxford University Press, 1998).

Supplementary files

Supplementary Files
Action
1. JATS XML