The recent progress in terahertz channel characterization and system design

Cover Page

Cite item

Full Text

Abstract

As the standardization of 5G New Radio (NR) systems operating in micro- and millimeter-wave frequency bands is over, scientific and industrial communities have begun to address the question of what 6G communications systems might or should be. While technological specifics are still in their early development phase, there is a common agreement that these systems will utilize the lower part of the terahertz band, namely, 100-300 GHz. This band poses a number of specific challenges for system designers, including the effects related to channel characteristics and the conceptually new requirements for electronics. This paper aims to report the current state-of-the-art channel characterization and communications system design. With respect to the former, we consider dynamic human body blockages and micromobility impairments. For the latter, we mainly concentrate on the physical layer devices for direct conversion schemes and the design of the so-called reconfigurable intelligent surfaces that will potentially serve as a cost-efficient blockage mitigation technique.

About the authors

Alexander S. Shurakov

Moscow Pedagogical State University; HSE University

Author for correspondence.
Email: alexander@rplab.ru
ORCID iD: 0000-0002-4671-7731
Scopus Author ID: 55266061300
ResearcherId: E-4118-2014

PhD, Associate Professor, Department of General and Experimental Physics, Moscow Pedagogical State University

1 M. Pirogovskaya St, bldg. 1, Moscow, 119991, Russian Federation; 20 Myasnitskaya St, Moscow, 101000, Russian Federation

Evgeny V. Mokrov

RUDN University

Email: mokrov-ev@rudn.ru
ORCID iD: 0000-0003-3290-4541
Scopus Author ID: 56512031300
ResearcherId: AAK-6348-2021

Candidate of Physical and Mathematical Sciences, Senior lecturer of Department of Probability Theory and Cyber Security of Peoples’ Friendship University of Russia

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Anatoliy N. Prikhodko

Moscow Pedagogical State University; HSE University; Russian Quantum Center

Email: anprihodko@hse.ru
ORCID iD: 0000-0002-4859-8975
Scopus Author ID: 57207500541
ResearcherId: ADC-0507-2022

Junior Researcher, Specialized Department of Quantum Optics and Telecommunications of Scontel CJSC, HSE University

1 M. Pirogovskaya St, bldg. 1, Moscow, 119991, Russian Federation; 20 Myasnitskaya St, Moscow, 101000, Russian Federation; Skolkovo, 143025, Russian Federation

Margarita I. Ershova

Moscow Pedagogical State University

Email: mi.ershova@mpgu.su
ORCID iD: 0009-0009-6785-4389
Scopus Author ID: 58298409900
ResearcherId: JNB-5214-2023

Junior Researcher, Laboratory of quantum detectors, Moscow Pedagogical State University

1 M. Pirogovskaya St, bldg. 1, Moscow, 119991, Russian Federation

Vyacheslav O. Begishev

RUDN University

Email: begishev-vo@rudn.ru
ORCID iD: 0000-0002-7232-4157
Scopus Author ID: 56562837400
ResearcherId: AAF-6491-2019

Candidate of Physical and Mathematical Sciences, Assistant professor of the Department of Probability Theory and Cyber Security of Peoples’ Friendship University of Russia

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Abdukodir A. Khakimov

RUDN University

Email: khakimov-aa@rudn.ru
ORCID iD: 0000-0003-2362-3270
Scopus Author ID: 57194233776
ResearcherId: AAD-1134-2019

Candidate of Technical Sciences, Junior researcher of the Department of Probability Theory and Cyber Security of Peoples’ Friendship University of Russia

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Yevgeny A. Koucheryavy

RUDN University

Email: kucheryavyy-ea@rudn.ru
ORCID iD: 0000-0003-3976-297X
Scopus Author ID: 6507253900
ResearcherId: D-7976-2018

Doctor of Technical Sciences, Professor of the Department of Probability Theory and Cyber Security of Peoples’ Friendship University of Russia

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Gregory N. Gol’tsman

Moscow Pedagogical State University; HSE University; Russian Quantum Center

Email: goltsman@rplab.ru
ORCID iD: 0000-0002-1960-9161
Scopus Author ID: 7006771637
ResearcherId: A-4189-2014

Doctor of Physical and Mathematical Sciences, Head of Department, Department of General and Experimental Physics, Moscow Pedagogical State University

1 M. Pirogovskaya St, bldg. 1, Moscow, 119991, Russian Federation; 20 Myasnitskaya St, Moscow, 101000, Russian Federation; Skolkovo, 143025, Russian Federation

References

  1. Park, J.-J., Lee, J., Liang, J., Kim, K.-W., Lee, K.-C. & Kim, M.-D. Millimeter wave vehicular blockage characteristics based on 28 GHz measurements in 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall) (2017), 1-5.
  2. Begishev, V., Sopin, E., Moltchanov, D., Kovalchukov, R., Samuylov, A., Andreev, S., Koucheryavy,Y. & Samouylov, K. Joint use of guard capacity and multiconnectivity for improved session continuity in millimeter-wave 5G NR systems. IEEE Transactions on Vehicular Technology 70, 2657-2672 (2021).
  3. Kovalchukov, R., Moltchanov, D., Begishev, V., Samuylov, A., Andreev, S., Koucheryavy, Y. & Samouylov, K. Improved session continuity in 5G NR with joint use of multi-connectivity and guard bandwidth in 2018 IEEE Global Communications Conference (GLOBECOM) (2018), 1-7.
  4. Begishev, V., Sopin, E., Moltchanov, D., Pirmagomedov, R., Samuylov, A., Andreev, S., Koucheryavy, Y. & Samouylov, K. Performance analysis of multi-band microwave and millimeter-wave operation in 5G NR systems. IEEE Transactions on Wireless Communications 20, 3475-3490 (2021).
  5. Sopin, E., Moltchanov, D., Daraseliya, A., Koucheryavy, Y. & Gaidamaka, Y. User association and multi-connectivity strategies in joint terahertz and millimeter wave 6G systems. IEEE Transactions on Vehicular Technology 71, 12765-12781 (2022).
  6. Zhang, H., Shlezinger, N., Guidi, F., Dardari, D., Imani, M. F. & Eldar, Y. C. Beam focusing for near-field multiuser MIMO communications. IEEE Transactions on Wireless Communications 21, 7476-7490 (2022).
  7. Durnin, J., Miceli, J. & Eberly, J. H. Comparison of Bessel and Gaussian beams. Optics letters 13, 79-80 (1988).
  8. Shurakov, A., Moltchanov, D., Prikhodko, A., Khakimov, A., Mokrov, E., Begishev, V., Belikov, I., Koucheryavy, Y. & Gol’tsman, G. Empirical blockage characterization and detection in indoor sub-THz communications. Computer Communications 201, 48-58. doi: 10.1016/j.comcom.2023. 01.017 (2023).
  9. Xing, Y. & Rappaport, T. S. Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz in 2018 IEEE global communications Conference (GLOBECOM) (2018), 1-6.
  10. Eckhardt, J. M., Petrov, V., Moltchanov, D., Koucheryavy, Y. & Kürner, T. Channel Measurements and Modeling for Low-Terahertz Band Vehicular Communications. IEEE Journal on Selected Areas in Communications 39, 1590-1603 (2021).
  11. Petrov, V., Eckhardt, J. M., Moltchanov, D., Koucheryavy, Y. & Kurner, T. Measurements of reflection and penetration losses in low terahertz band vehicular communications in 2020 14th European Conference on Antennas and Propagation (EuCAP) (2020), 1-5.
  12. Du, K., Ozdemir, O., Erden, F. & Guvenc, I. Sub-Terahertz and mmWave Penetration Loss Measurements for Indoor Environments. arXiv preprint arXiv:2103.02745 (2021).
  13. Kokkoniemi, J., Lehtomäki, J., Petrov, V., Moltchanov, D. & Juntti, M. Frequency domain penetration loss in the terahertz band in 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications (2016), 1-4.
  14. Xing, Y. & Rappaport, T. S. Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz in 2018 IEEE global communications Conference (GLOBECOM) (2018), 1-6.
  15. Bilgin, B. A., Ramezani, H. & Akan, O. B. Human blockage model for indoor terahertz band communication in 2019 IEEE International Conference on Communications Workshops (ICC Workshops) (2019), 1-6.
  16. Shurakov, A., Rozhkova, P., Khakimov, A., Mokrov, E., Prikhodko, A., Begishev, V., Koucheryavy, Y., Komarov, M. & Gol’tsman, G. Dynamic Blockage in Indoor Reflection-Aided Sub-Terahertz Wireless Communications. IEEE Access 11, 134677-134689. doi: 10.1109/ACCESS.2023.3337050 (2023).
  17. Ostrikova, D., Beschastnyi, V., Moltchanov, D., Gaidamaka, Y., Koucheryavy, Y. & Samouylov, K. System-level analysis of energy and performance trade-offs in mmWave 5G NR systems. IEEE Transactions on Wireless Communications (2023).
  18. Balanis, C. Antenna theory: analysis and design. Microstrip Antennas, John Wiley & Sons (2005).
  19. Ichkov, A., Gehring, I., Mähönen, P. & Simić, L. Millimeter-wave beam misalignment effects of small-and large-scale user mobility based on urban measurements in Proceedings of the 5th ACM Workshop on Millimeter-Wave and Terahertz Networks and Sensing Systems (2021), 13-18.
  20. Petrov, V., Moltchanov, D., Koucheryavy, Y. & Jornet, J. M. The effect of small-scale mobility on terahertz band communications in Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication (2018), 1-2.
  21. Petrov, V., Moltchanov, D., Koucheryavy, Y. & Jornet, J. M. Capacity and outage of terahertz communications with user micro-mobility and beam misalignment. IEEE Transactions on Vehicular Technology 69, 6822-6827 (2020).
  22. Stepanov, N., Turlikov, A., Begishev, V., Koucheryavy, Y. & Moltchanov, D. Accuracy assessment of user micromobility models for thz cellular systems in Proceedings of the 5th ACM Workshop on Millimeter-Wave and Terahertz Networks and Sensing Systems (2021), 37-42.
  23. Stepanov, N., Moltchanov, D., Begishev, V., Turlikov, A. & Koucheryavy, Y. Statistical analysis and modeling of user micromobility for THz cellular communications. IEEE Transactions on Vehicular Technology 71, 725-738 (2021).
  24. Moltchanov, D., Gaidamaka, Y., Ostrikova, D., Beschastnyi, V., Koucheryavy, Y. & Samouylov, K. Ergodic outage and capacity of terahertz systems under micromobility and blockage impairments. IEEE Transactions on Wireless Communications 21, 3024-3039 (2021).
  25. Dugaeva, S., Begishev, V., Mokrov, E. & Samouylov, K. Using Motion Sensors For Improved Beam Tracking in THz Communications with User Micromobility in 2022 International Conference on Modern Network Technologies (MoNeTec) (2022), 1-8.
  26. Dugaeva, S., Begishev,V. & Stepanov, N. UtilizationofMachineLearningAlgorithmstoIdentifyUser Applications in International Conference on Distributed Computer and Communication Networks (2023), 410-422.
  27. Du Preez, J., Sinha, S. & Sengupta, K. SiGe and CMOS technology for state-of-the-art millimeterwave transceivers. IEEE Access (2023).
  28. Jia, S., Lo, M.-C., Zhang, L., Ozolins, O., Udalcovs, A., Kong, D., Pang, X., Guzman, R., Yu, X., Xiao, S., et al. Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications. Nature communications 13, 1388 (2022).
  29. Gupta, A. S., Howe, D. A., Nelson, C., Hati, A., Walls, F. L. & Nava, J. F. High spectral purity microwave oscillator: Design using conventional air-dielectric cavity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control 51, 1225-1231 (2004).
  30. Makhlouf, S., Cojocari, O., Hofmann, M., Nagatsuma, T., Preu, S.,Weimann, N., Hübers, H.-W. & Stöhr, A. Terahertz sources and receivers: From the past to the future. IEEEJournalofMicrowaves 3, 894-912 (2023).
  31. Brown, T. W., Dogiamis, G. C., Yeh, Y.-S., Correas-Serrano, D., Rane, T. S., Ravikumar, S., Chou, J. C., Neeli, V. B., Koo, J., Marulanda, M., et al. A 50-Gb/s 134-GHz 16-QAM 3-m dielectric waveguide transceiver system implemented in 22-nm FinFET CMOS. IEEE Solid-State Circuits Letters 4, 206-209 (2021).
  32. Carpenter, S., Zirath, H., He, Z. S. & Bao, M. A fully integrated D-band direct-conversion I/Q transmitter and receiver chipset in SiGe BiCMOS technology. Journal of Communications and Networks 23, 73-82 (2021).
  33. Rodríguez-Vázquez, P., Grzyb, J., Heinemann, B. & Pfeiffer, U. R. A 16-QAM 100-Gb/s 1-M wireless link with an EVM of 17% at 230 GHz in an SiGe technology. IEEE Microwave and Wireless Components Letters 29, 297-299 (2019).
  34. Gustavsson, U., Frenger, P., Fager, C., Eriksson, T., Zirath, H., Dielacher, F., Studer, C., Pärssinen, A., Correia, R., Matos, J. N., et al. Implementation challenges and opportunities in beyond-5G and 6G communication. IEEE Journal of Microwaves 1, 86-100 (2021).
  35. Harter, T., Füllner, C., Kemal, J. N., Ummethala, S., Steinmann, J. L., Brosi, M., Hesler, J. L., Bründermann, E., Müller, A.-S., Freude, W., et al. Generalized Kramers-Kronig receiver for coherent terahertz communications. Nature Photonics 14, 601-606 (2020).
  36. Shurakov, A., Prikhodko, A., Belikov, I. & Gol’tsman, G. Terahertz Hot Electron Bolometer Coherent and Direct Detectors Utilizing Si Waveguiding Structures in 2022 IEEE 8th All-Russian Microwave Conference (RMC) (2022), 19-22.
  37. Alijabbari, N., Bauwens, M. F. & Weikle, R. M. Design and characterization of integrated submillimeter-wave quasi-vertical Schottky diodes. IEEE Transactions on Terahertz Science and Technology 5, 73-80 (2014).
  38. Shurakov, A., Mikhailov, D., Belikov, I., Kaurova, N., Zilberley, T., Prikhodko, A., Voronov, B., Vasil’evskii, I. & Goltsman, G. Planar Schottky diode with a

Supplementary files

Supplementary Files
Action
1. JATS XML