Buckling in inelastic regime of a uniform console with symmetrical cross section: computer modeling using Maple 18

Cover Page

Cite item

Full Text

Abstract

The method of numerical integration of Euler problem of buckling of a homogeneous console with symmetrical cross section in regime of plastic deformation using Maple 18 is presented. The ordinary differential equation for a transversal coordinate \(y\) was deduced which takes into consideration higher geometrical momenta of cross section area. As an argument in the equation a dimensionless console slope \(p=tg \theta\) is used which is linked in mutually unique manner with all other linear displacements. Real strain-stress diagram of metals (steel, titan) and PTFE polymers were modelled via the Maple nonlinear regression with cubic polynomial to provide a conditional yield point (\(t\),\(\sigma_f\)). The console parameters (free length \(l_0\), \(m\), cross section area \(S\) and minimal gyration moment \(J_x\)) were chosen so that a critical buckling forces \(F_\text{cr}\) corresponded to the stresses \(\sigma\) close to the yield strength \(\sigma_f\). To find the key dependence of the final slope \(p_f\) vs load \(F\) needed for the shape determination the equality for restored console length was applied. The dependences \(p_f(F)\) and shapes \(y(z)\), \(z\) being a longitudinal coordinate, were determined within these three approaches: plastic regime with cubic strain-stress diagram, tangent modulus \(E_\text{tang}\) approximations and Hook’s law. It was found that critical buckling load \(F_\text{cr}\) in plastic range nearly two times less of that for an ideal Hook’s law. A quasi-identity of calculated console shapes was found for the same final slope \(p_f\) within the three approaches especially for the metals.

About the authors

Viktor V. Chistyakov

Physical-Technical Institute named after A.F. Ioffe of RAS

Author for correspondence.
Email: v.chistyakov@mail.ioffe.ru
ORCID iD: 0000-0003-4574-0857
Scopus Author ID: 44461256400
ResearcherId: F-9868-2016

Candidate of Sciences in Physics and Mathematics, Senior Researcher of Laboratory of Physics of Rare Earth Semiconductors

26, Politekhnicheskaya St., Saint Petersburg, 194021, Russian Federation

Sergey M. Soloviev

Physical-Technical Institute named after A.F. Ioffe of RAS

Email: serge.soloviev@mail.ioffe.ru
ORCID iD: 0000-0002-9019-7382
Scopus Author ID: 7101661580
ResearcherId: D-5128-2015

Candidate of Sciences in Physics and Mathematics, Leading Researcher (Head of Laboratory) of Laboratory of Physics of Rare Earth Semiconductors

26, Politekhnicheskaya St., Saint Petersburg, 194021, Russian Federation

References

  1. T. H. G. Megson, “Columns,” in Aircraft Structures for Engineering Students, 6th. Elsevier Ltd., 2022, pp. 253-324.
  2. F. R. Shanley, “Inealstic Column Theory,” Journal of Aeronautical Sciences, vol. 14, no. 5, pp. 261-280, 1947.
  3. A. Afroz and T. Fukui, “Numerical Analysis II: Branch Switching,” in Bifurcation and Buckling Structures, 1st. CRC Press, 2021, p. 12.
  4. N. Shuang, J. R. Kim, and F. F. Rasmussen, “Local-Global Interaction Buckling of Stainless Steel I-Beams. II: Numerical Study and Design,” Journal of Structural Engineering, vol. 141, no. 8, p. 04 014 195, 2014. doi: 10.1061/(ASCE)ST.1943-541X.0001131.
  5. F. Shenggang, D. Daoyang, Z. Ting, et al., “Experimental Study on Stainless Steel C-columns with Local-Global Interaction Buckling,” Journal of Constructional Steel Research, vol. 198, no. 2, p. 107 516, 2022. doi: 10.1016/j.jcsr.2022.107516.
  6. S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability. NewYork, USA: McGraw-Hill, 1961.
  7. K. L. Nielsen and J. W. Hutchinson, “Plastic Buckling of Columns at the Micron Scale,” International Journal of Solids and Structures, vol. 257, no. 5, p. 111 558, 2022. doi: 10.1016/j.ijsolstr.2022.111558.
  8. A. Bedford and K. M. Liechti, “Buckling of Columns,” in Mechanics of Materials, Springer, Cham., 2020. doi: 10.1007/978-3-030-220822_10.
  9. Z. P. Bazant, “Shear buckling of sandwich, fiber-composite and lattice columns, bearings and helical springs: paradox resolved,” ASME Journal of Applied Mechanics, vol. 70, pp. 75-83, 2003. doi: 10.1115/1.1509486.
  10. C. Chuang, G. Zihan, and T. Enling, “Determination of Elastic Modulus, Stress Relaxation Time and Thermal Softening Index in ZWT Constitutive Model for Reinforced Al/PTFE,” Polymers, vol. 15, p. 702, 2023. doi: 10.3390/polym15030702.

Supplementary files

Supplementary Files
Action
1. JATS XML