Convergence of the grid method for the Fredholm equation of the first kind with Tikhonov regularization

Cover Page

Cite item

Full Text

Abstract

The paper describes a grid method for solving an ill-posed problem for the Fredholm equation of the first kind using the A. N. Tikhonov regularizer. The convergence theorem for this method was formulated and proved. A procedure for thickening grids with a simultaneous increase in digit capacity of calculations is proposed.

About the authors

Aleksandr A. Belov

M. V. Lomonosov Moscow State University; RUDN University

Author for correspondence.
Email: aa.belov@physics.msu.ru
ORCID iD: 0000-0002-0918-9263
Scopus Author ID: 57191950560
ResearcherId: Q-5064-2016

Candidate of Physical and Mathematical Sciences, Researcher of Faculty of Physics, M. V. Lomonosov Moscow State University; Assistant Professor of Department of Applied Probability and Informatics of Peoples’ Friendship University of Russia

1, bld. 2, Leninskie Gory, Moscow, 119991, Russian Federation; 6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation

References

  1. W. Jun-Gang, L. Yan, and R. Yu-Hong, “Convergence of Chebyshev type regularization method under Morozov discrepancy principle,” Applied Mathematics Letters, vol. 74, pp. 174-180, 2017. doi: 10.1016/j.aml.2017.06.004.
  2. A. A. Belov and N. N. Kalitkin, “Processing of Experimental Curves by Applying a Regularized Double Period Method,” Doklady Mathematics, vol. 94, no. 2, pp. 539-543, 2016. doi: 10.1134/S1064562416050100.
  3. A. A. Belov and N. N. Kalitkin, “Regularization of the double period method for experimental data processing,” Computational Mathematics and Mathematical Physics, vol. 57, no. 11, pp. 1741-1750, 2017. doi: 10.1134/S0965542517110033.
  4. A. B. Bakushinsky and A. Smirnova, “Irregular operator equations by iterative methods with undetermined reverse connection,” Journal of Inverse and Ill-posed Problems, vol. 18, pp. 147-165, 2010. doi: 10.1515/jiip.2010.005.
  5. A. B. Bakushinsky and A. Smirnova, “Discrepancy principle for generalized GN iterations combined with the reverse connection control,” Journal of Inverse and Ill-posed Problems, vol. 18, pp. 421-431, 2010. doi: 10.1515/jiip.2010.019.
  6. T. Jian-guo, “An implicit method for linear ill-posed problems with perturbed operators,” Mathematical Methods in the Applied Sciences, vol. 18, pp. 1327-1338, 2006. doi: 10.1002/mma.729.
  7. A. S. Leonov, Solving ill-posed inverse problems: essay on theory, practical algorithms and Matlab demonstrations [Resheniye nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskiye algoritmy i demonstratsii v Matlab]. Moscow: Librokom, 2010, in Russian.
  8. A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems. New York: Halsted, 1977.
  9. Y. L. Gaponenko, “On the degree of decidability and the accuracy of the solution of an ill-posed problem for a fixed level of error,” USSR Computational Mathematics and Mathematical Physics, vol. 24, pp. 96-101, 1984. doi: 10.1016/0041-5553(84)90092-2.
  10. Y. L. Gaponenko, “The accuracy of the solution of a non-linear ill-posed problem for a finite error level,” USSR Computational Mathematics and Mathematical Physics, vol. 25, pp. 81-85, 1985. doi: 10.1016/00415553(85)90076-X.
  11. Y. Hon and T. Wei, “Numerical computation of an inverse contact problem in elasticity,” Journal of Inverse and Ill-posed Problems, vol. 14, pp. 651-664, 2006. doi: 10.1515/156939406779802004.
  12. H. Ben Ameur and B. Kaltenbacher, “Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators,” Journal of Inverse and Ill-posed Problems, vol. 10, pp. 561-583, 2002. doi: 10.1515/jiip.2002.10.6.561.
  13. A. B. Bakushinsky and A. S. Leonov, “New a posteriori error estimates for approximate solutions to irregular operator equations [Novyye aposteriornyye otsenki pogreshnosti priblizhennykh resheniy neregulyarnykh operatornykh uravneniy],” Vychisl. Metody Programm., vol. 15, pp. 359-369, 2014, in Russian.
  14. A. B. Bakushinsky, A. Smirnova, and L. Hui, “A posteriori error analysis for unstable models,” Journal of Inverse and Ill-posed Problems, vol. 20, pp. 411-428, 2012. doi: 10.1515/jip-2012-0006.
  15. M. V. Klibanov, A. B. Bakushinsky, and L. Beilina, “Why a minimizer of the Tikhonov functional is closer to the exact solution than the first guess,” Journal of Inverse and Ill-posed Problems, vol. 19, pp. 83-105, 2011. doi: 10.1515/jiip.2011.024.
  16. A. V. Goncharskii, A. S. Leonov, and A. G. Yagola, “A generalized discrepancy principle,” USSR Computational Mathematics and Mathematical Physics, vol. 13, no. 2, pp. 25-37, 1973. doi: 10.1016/0041-5553(73)90128-6.
  17. A. A. Belov and N. N. Kalitkin, “Solution of the Fredholm Equation of the First Kind by the Mesh Method with Tikhonov Regularization,” Mathematical Models and Computer Simulations, vol. 11, pp. 287-300, 2018. doi: 10.1134/S2070048219020042.
  18. V. S. Ryabenkii and A. F. Fillipov, On stability of difference equations [Ob ustoychivosti raznostnykh uravneniy]. Moscow: Gos. Izdat. Tekh.-Teor. Liter., 1956, in Russian.
  19. R. D. Richtmyer and K. W. Morton, Difference methods for initial-value problems. New York: Interscience publishers, 1967.
  20. N. N. Kalitkin, L. F. Yuhno, and L. V. Kuzmina, “Quantitative criterion of conditioning for systems of linear algebraic equations,” Mathematical Models and Computer Simulations, vol. 3, pp. 541-556, 2011. DOI: 10. 1134/S2070048211050097.

Supplementary files

Supplementary Files
Action
1. JATS XML