Quantum mereology in finite quantum mechanics

Cover Page

Cite item

Full Text

Abstract

Any Hilbert space with composite dimension can be factored into a tensor product of smaller Hilbert spaces. This allows us to decompose a quantum system into subsystems. We propose a model based on finite quantum mechanics for a constructive study of such decompositions.

About the authors

Vladimir V. Kornyak

Joint Institute for Nuclear Research

Author for correspondence.
Email: vkornyak@gmail.com
ORCID iD: 0000-0002-5712-2960

Doctor of Sciences in Physics and Mathematics, Leading researcher, Laboratory of Information Technologies

6, Joliot-Curie St., Dubna, Moscow Region, 141980, Russian Federation

References

  1. D. N. Page and W. K. Wootters, “Evolution without evolution: dynamics described by stationary observables,” Phys. Rev. D, vol. 27, pp. 2885- 2892, 12 Jun. 1983. doi: 10.1103/PhysRevD.27.2885.
  2. S. M. Carroll and A. Singh, “Quantum mereology: factorizing Hilbert space into subsystems with quasiclassical dynamics,” Physical Review A, vol. 103, no. 2, Feb. 2021. doi: 10.1103/physreva.103.022213.
  3. C. Cao, S. M. Carroll, and S. Michalakis, “Space from Hilbert space: recovering geometry from bulk entanglement,” Physical Review D, vol. 95, no. 2, Jan. 2017. doi: 10.1103/physrevd.95.024031.
  4. M. Woods, “The Page-Wootters mechanism 36 years on: a consistent formulation which accounts for interacting systems,” Quantum Views, vol. 3, p. 16, Jul. 2019. doi: 10.22331/qv-2019-07-21-16.
  5. P. Zanardi, “Virtual quantum subsystems,” Physical Review Letters, vol. 87, no. 7, Jul. 2001. doi: 10.1103/physrevlett.87.077901.
  6. P. Zanardi, D. A. Lidar, and S. Lloyd, “Quantum tensor product structures are observable induced,” Physical Review Letters, vol. 92, no. 6, Feb. 2004. doi: 10.1103/physrevlett.92.060402.
  7. A. M. Gleason, “Measures on the closed subspaces of a Hilbert space,” Journal of Mathematics and Mechanics, vol. 6, no. 6, pp. 885-893, 1957.
  8. V. V. Kornyak, “Quantum models based on finite groups,” Journal of Physics: Conference Series, vol. 965, p. 012023, Feb. 2018. doi: 10.1088/1742-6596/965/1/012023.
  9. V. V. Kornyak, “Modeling quantum behavior in the framework of permutation groups,” in EPJ Web of Conferences. EDP Sciences, 2018, vol. 173, p. 01007. doi: 10.1051/epjconf/201817301007.
  10. V. V. Kornyak, “Mathematical modeling of finite quantum systems,” Lect. Notes Comput. Sci., vol. 7125, pp. 79-93, 2012. arXiv: 1107.5675 [quant-ph].
  11. T. Banks, “Finite deformations of quantum mechanics,” 2020. arXiv: 2001.07662[hep-th].
  12. M. J. Collins, “On Jordan’s theorem for complex linear groups,” Journal of Group Theory, vol. 10, no. 4, pp. 411-423, 2007. doi: 10.1515/JGT. 2007.032.
  13. A. Rényi, “On measures of entropy and information,” English, in Proc. 4th Berkeley Symp. Math. Stat. Probab. 1, 1961, pp. 547-561.
  14. M. Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen. Rel. Grav., vol. 42, pp. 2323-2329, 2010. doi: 10.1142/S0218271810018529. arXiv: 1005.3035[hep-th].
  15. J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” Fortschritte der Physik, vol. 61, no. 9, pp. 781-811, Aug. 2013. doi: 10.1002/prop.201300020.
  16. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, 10th anniversary edition. USA: Cambridge University Press, 2016.

Supplementary files

Supplementary Files
Action
1. JATS XML