Northern Eurasian large lakes level changes in the context of late Quaternary climatic and glacial history

Cover Page

Cite item

Full Text

Abstract

During the last years major progress in the reconstruction of the climatic and environmental history of Northern Eurasia has been made within the scope of the Russian-German project PLOT. The project aimed at investigating the regional responses of the quaternary climate and environment on external forcing and feedback mechanisms along a more than 6000 km long longitudinal transect crossing Northern Eurasia. The well-dated record from Lake El´gygytgyn used as reference site for comparison the local climatic and environmental histories. Seismic surveys and sediment coring up to 54 m below lake floor performed on Ladoga Lake (North-West of Russia), Lake Bolshoye Shchuchye (Polar Ural), Lake Levinson-Lessing and Lake Taymyr (Taymyr Peninsula), Lake Emanda (Yana Highlands). Here, we present the major results of the project with a special focus on lake-level fluctuations and forcing mechanisms.

Full Text

1. Introduction

Much progress has been made recently in the reconstruction of the climatic and environmental history of Northern Eurasia based on exploring and retrieving long sediment records from lakes. The most prominent example is Lake El´gygytgyn that was the subject of an international ICDP drilling project that resulted in the recovery of the longest continuous palaeoclimatic and palaeoenvironmental record for the terrestrial Arctic covering the last 3.6 million years (Melles et al., 2012; Brigham-Grette et al., 2013).

Russian-German project PLOT (Paleolimnological Transect) aimed at investigating the regional responses of the quaternary climate and environment on external forcing and feedback mechanisms along a more than 6000 km long longitudinal transect crossing Northern Eurasia using the well-dated record from Lake El´gygytgyn as reference site for comparison the local climatic and environmental histories.

2. Materials and methods

In order to reconstruct the climatic and environmental history during Late Quaternary times seismic surveys and sediment coring performed on five lakes, which together with Lake El´gygytgyn form a more than 6000 km long longitudinal transect across northern Eurasia.

A multi-channel, high-resolution seismic reflection survey using a Micro-GI airgun and Innomar sediment echo sounding system were used for obtaining large-scale information on the depositional and post-depositional histories, and for selecting the most appropriate locations for coring.

Sediment coring performed by using an improved UWITEC percussion piston corer.

For the reconstruction of the sedimentary processes a range of bulk analyses carried out on the sediment cores, including whole-core MSCL logging (physical properties, 1 cm spacing), half-core XRF scanning (chemical composition, 0.2 to 5 mm spacing), thin section microscopy (microstructures, irregularly) as well as water contents, grain-size distributions, organic and inorganic geochemistry (regular, every 4 to 16 cm). The basic chronologies established by means of 14C AMS and optically stimulated luminescence (OSL).

The paleoclimatological reconstructions particularly rely on palynological and diatom analyses.

3. Results

Major results recently published in special issues of journals Boreas (Melles et al., 2019 and references therein) and Journal of Quaternary Science (Melles et al., 2022 and references therein).

During the pilot stage of the project in 2013 about 1500 km of seismic profiles were performed and two long (18 m and 22 m) sediment cores were retrieved in northern part of Lake Ladoga that is largest European lake located in North-West of Russia. In summer 2016 54 m-long sediment core was obtained in the central part of 130 m deep Lake Bolshoye Shchuchye located in Polar Ural. During 2016 and 2017 seismic surveys and sediment coring performed in Taymyr Peninsula on lakes Levinson-Lessing (47 m-long sediment core) and Taymyr (14 m and 16 m-long sediment cores). In summer 2017 sediment echo sounding and coring (6 m-long sediment core) were performed on Lake Emanda (Yana Highlands).

4. Discussion and conclusions

New results concerning Late Quaternary lake-level fluctuations obtained for lakes Ladoga (Gromig et al., 2019; Lebas et al., 2021), Bolshoye Shchuchye (Lenz et al., 2022a), Levinson-Lessing (Lebas et al., 2019; Lenz et al., 2022b), Taymyr (Gromig et al., 2022), Emanda (Baumer et al., 2021) and El´gygytgyn (Fedorov et al., 2019) in addition to partly available information in the literature allow to make following main conclusions:

  1. In the western and central sectors of Northern Eurasia strongly affected by Late Quaternary Ice Sheets large lakes level changes do not directly correlate with climatic history but more controlled by ice margin position.
  2. In the eastern sector of Northern Eurasia large lakes level changes shows prominent correlation with climatic history.
  3. The longest lake-level history is reconstructed for Lake El´gygytgyn (since MIS 7). Reconstruction shows that long-term lake-level history during the Middle and Late Pleistocene is the mean summer temperature but short-term lake-level changes at the transition from the last glacial to the Holocene and within the Holocene, in contrast, are controlled not only by the temperature but also by the local precipitation.

Acknowledgments

The PLOT project was conducted in the frame of a bilateral Russian-German agreement in the field of polar and marine research and is funded by the German and Russian Research Ministries. Fieldwork at Polar Ural and Taymyr Peninsula was conducted in collaboration with the Russian-Norwegian CHASE (Climate History along the Arctic Seaboard of Eurasia) project.

The authors are deeply grateful to all German colleagues Andreev A., Gromig R., Krastel S., Lebas E., Lenz M.M., Lenz M, Meyer H., Wennrich V., Werner M., many others and especially to principal investigators of PLOT project Melles M. and Wagner B. for all the effort in joint research.

Conflict of interest

The authors declare no conflict of interest.

×

About the authors

G. Fedorov

St. Petersburg State University; Arctic and Antarctic Research Institute

Author for correspondence.
Email: g.fedorov@spbu.ru
Russian Federation, Universitetskaya Nab. 7/9, St. Petersburg, 199034; Bering Str. 38, St. Petersburg, 199397

A. Cherezova

A.P. Karpinsky Russian Geological Research Institute (FGBU-“VSEGEI”)

Email: g.fedorov@spbu.ru
Russian Federation, 74, Sredny prospect, St. Petersburg, 199106

N. Kostromina

St. Petersburg State University

Email: g.fedorov@spbu.ru
Russian Federation, Universitetskaya Nab. 7/9, St. Petersburg, 199034

A. Ludikova

Institute of Limnology SPC RAS

Email: g.fedorov@spbu.ru
Russian Federation, Sevastyanova 9, St. Petersburg, 196105

M. Mustafin

A.P. Karpinsky Russian Geological Research Institute (FGBU-“VSEGEI”)

Email: g.fedorov@spbu.ru
Russian Federation, 74, Sredny prospect, St. Petersburg, 199106

L. Pestryakova

North-eastern Federal University of Yakutsk

Email: g.fedorov@spbu.ru

Department for Geography and Biology

Russian Federation, Belinskogo 58, Yakutsk, 67700

Z. Pushina

I.S. Gramberg All‐Russia Scientific Research Institute for Geology and Mineral Resources of the Ocean

Email: g.fedorov@spbu.ru
Russian Federation, Angliyskiy av. 1, St, Petersburg, 190121

L. Savelieva

St. Petersburg State University

Email: g.fedorov@spbu.ru
Russian Federation, Universitetskaya Nab. 7/9, St. Petersburg, 199034

D. Subetto

Herzen State Pedagogical University of Russia

Email: g.fedorov@spbu.ru
Russian Federation, emb. Moika 48, St. Petersburg, 191186

References

  1. Baumer M.M., Wagner B., Meyer H. et al. 2021. Climatic and environmental changes in the Yana Highlands of north-eastern Siberia over the last c. 57 000 years, derived from a sediment core from Lake Emanda. Boreas 50: 114-133. doi: 10.1111/bor.12476
  2. Brigham-Grette J., Melles M., Minyuk P. et al. 2013. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia. Science 340: 1421-1427. doi: 10.1126/science.1233137
  3. Fedorov G., Andreev A.A., Raschke E. et al. 2019. Middle to Late Pleistocene lake-level fluctuations of Lake El’gygytgyn, far-east Russian Arctic. Boreas 48: 516-533. doi: 10.1111/bor.12367
  4. Gromig R., Wagner B., Wennrich V. et al. 2019. Deglaciation history of Lake Ladoga (northwestern Russia) based on varved sediments. Boreas 48: 330-348. doi: 10.1111/bor.12379
  5. Gromig R., Lebas E., Savelieva L. et al. 2022. Sedimentation history of Lake Taymyr, Central Russian Arctic, since the Last Glacial Maximum. Journal of Quaternary Science 37: 851-867. doi: 10.1002/jqs.3342
  6. Lebas E., Krastel S., Wagner B. et al. 2019. Seismic stratigraphical record of Lake Levinson-Lessing, Taymyr Peninsula: evidence for ice-sheet dynamics and lake-level fluctuations since the Early Weichselian. Boreas 48: 470-487. doi: 10.1111/bor.12381
  7. Lebas E., Gromig R., Krastel S. et al. 2021. Pre-glacial and post-glacial history of the Scandinavian Ice Sheet in NW Russia – evidence from Lake Ladoga. Quaternary Science Reviews 251: 106637. doi: 10.1016/j.quascirev.2020.106637
  8. Lenz M.M., Andreev A., Nazarova L. et al. 2022a. Climate, glacial and vegetation history of the polar Ural Mountains since c. 27 cal ka BP, inferred from a 54 m long sediment core from Lake Bolshoye Shchuchye. Journal of Quaternary Science 37: 818-835. doi: 10.1002/jqs.3400
  9. Lenz M., Lenz M.M., Andreev A. et al. 2022b. Climate and environmental history at Lake Levinson-Lessing, Taymyr Peninsula, during the last 62 kyr. Journal of Quaternary Science 37: 836-850. doi: 10.1002/jqs.3384
  10. Melles M., Brigham-Grette J., Minyuk P.S. 2012. 2.8 million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science 337: 315-320. doi: 10.1126/science.1222135
  11. Melles M., Svendsen J. I., Fedorov G. et al. 2019. Northern Eurasian Lakes - Late Quaternary glaciation and climate history: an introduction. Boreas 48: 269-272. doi: 10.1111/bor.12395.
  12. Melles M., Svendsen J.I., Fedorov G. et al. 2022. Quaternary environmental and climatic history of the northern high latitudes – recent contributions and perspectives from lake sediment records. Journal of Quaternary Science 37: 721-728. doi: 10.1002/jqs.3456

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Fedorov G., Cherezova A., Kostromina N., Ludikova A., Mustafin M., Pestryakova L., Pushina Z., Savelieva L., Subetto D.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».