Identification of Baikal phytoplankton inferred from computer vision methods and machine learning

Cover Page

Cite item

Abstract

This study discusses the problem of phytoplankton classification using computer vision methods and convolutional neural networks. We created a system for automatic object recognition consisting of two parts: analysis and primary processing of phytoplankton images and development of the neural network based on the obtained information about the images. We developed software that can detect particular objects in images from a light microscope. We trained a convolutional neural network in transfer learning and determined optimal parameters of this neural network and the optimal size of using dataset. To increase accuracy for these groups of classes, we created three neural networks with the same structure. The obtained accuracy in the classification of Baikal phytoplankton by these neural networks was up to 80%.

About the authors

А. V. Lysenko

Limnological Institute, Siberian Branch of the Russian Academy of Sciences; Irkutsk State University

Author for correspondence.
Email: allessouth@gmail.com

Institute of Mathematics and Information Technologies

Russian Federation, 664033, Irkutsk, Ulan-Batorskaya str., 3; 664003, Irkutsk, Gagarina str., 20

М. S. Oznobikhin

Limnological Institute, Siberian Branch of the Russian Academy of Sciences; Irkutsk State University

Email: allessouth@gmail.com

Institute of Mathematics and Information Technologies

Russian Federation, 664033, Irkutsk, Ulan-Batorskaya str., 3; 664003, Irkutsk, Gagarina str., 20

Е. А. Kireev

Limnological Institute, Siberian Branch of the Russian Academy of Sciences; Irkutsk State University

Email: allessouth@gmail.com

Institute of Mathematics and Information Technologies

Russian Federation, 664033, Irkutsk, Ulan-Batorskaya str., 3; 664003, Irkutsk, Gagarina str., 20

K. S. Dubrova

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: allessouth@gmail.com
Russian Federation, 664033, Irkutsk, Ulan-Batorskaya str., 3

S. S. Vorobyeva

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: allessouth@gmail.com
Russian Federation, 664033, Irkutsk, Ulan-Batorskaya str., 3

References

  1. Canny J. 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6): 679-698. doi: 10.1109/TPAMI.1986.4767851
  2. Chollet F. 2017. Xception: deep learning with depthwise separable convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition. doi: 10.1109/CVPR.2017.195
  3. Galdran A., Alvarez-Gila A., Meyer M.I. et al. 2017. Data-driven color augmentation techniques for deep skin image analysis. arXiv:1703.03702v1.
  4. Hussain M., Bird J.J., Faria D.R. 2018. A study on CNN transfer learning for image classification. In: 18th Annual UK Workshop on Computational Intelligence. doi: 10.1007/978-3-319-97982-3_16
  5. Larsen-Freeman D. 2013. Transfer of learning transformed. Language Learning 63(s1). doi: 10.1111/j.1467-9922.2012.00740.x
  6. Liao P.-S., Chen T.-S., Chung P.-C. 2001. A fast algorithm for multilevel thresholding. Journal of Information Science and Engineering 17(5): 713-727. doi: 10.6688/JISE.2001.17.5.1
  7. Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1): 62-66. doi: 10.1109/TSMC.1979.4310076
  8. Pratt L., Jennings B. 1996. A survey of transfer between connectionist networks. Connection Science 8(2): 163-184. doi: 10.1080/095400996116866
  9. Sánchez C., Cristóbal G., Bueno G. 2019. Diatom identification including life cycle stages through morphological and texture descriptors. PeerJ 7. doi: 10.7717/peerj.6770
  10. Shorten C., Khoshgoftaar T.M. 2019. A survey on image data augmentation for deep learning. Journal of Big Data 6(1). doi: 10.1186/s40537-019-0197-0
  11. Tapas A. 2016. Transfer learning for image classification and plant phenotyping. In: Second International Conference on Electronics, Communication and Aerospace Technology. doi: 10.1109/ICECA.2018.8474802
  12. Vorobyeva S.S. 2018. Phytoplankton assemblages of the Southern Baikal in 1990-1995 and 2016-2018. Limnology and Freshwater Biology. 1(2): 141-143. doi: 10.31951/2658-3518-2018-A-2-141
  13. Bondarenko N.A., Vorobyova S.S., Zhuchenko N.A. et al. 2020. Current state of phytoplankton in the littoral area of Lake Baikal, spring 2017. Journal of Great Lakes Research 46(1): 17-28. doi: 10.1016/j.jglr.2019.10.001
  14. Yang A., Zhang W., Wang J. et al. 2020. Review on the application of machine learning algorithms in the sequence data mining of DNA. Frontiers in Bioengineering and Biotechnology 8. doi: 10.3389/fbioe.2020.01032
  15. Yamashita R., Nishio M., Do R.K.G. et al. 2018. Convolutional neural networks: an overview and application in radiology. Insights into Imaging 9(4). doi: 10.1007/s13244-018-0639-9
  16. Majaj N.J., Pelli D.G. 2018. Deep learning - using machine learning to study biological vision. Journal of Vision 18(13):2: 1-13. doi: 10.1167/18.13.2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Lysenko А.V., Oznobikhin М.S., Kireev Е.А., Dubrova K.S., Vorobyeva S.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).