Modelling of transparency of Lake Baikal inferred from the Sentinel-2 data
- Authors: Boldanova E.V.1
-
Affiliations:
- Baikal State University
- Issue: No 2 (2021)
- Pages: 1126-1129
- Section: Articles
- URL: https://journals.rcsi.science/2658-3518/article/view/283761
- DOI: https://doi.org/10.31951/2658-3518-2021-A-2-1126
- ID: 283761
Cite item
Full Text
Abstract
The remote sensing methods usage makes it possible to increase the accuracy and efficiency of data on the state of water bodies. Among the many satellite systems, Sentinel-2 is the most suitable for inland water assessment. One of the abiotic factors in assessing the trophicity of water bodies is the transparency along the Secchi disk. Models for calculating water transparency have been developed for individual water bodies. The analysis showed that these models don’t adequately describe the transparency for Lake Baikal. Based on the correlation-regression analysis, the parameters of the exponential function were estimated for calculating the transparency of the surface waters of Lake Baikal using the values of the Sentinel-2 spectral channels. Despite the inaccuracy of the model for assessing the transparency in the coastal zone, it can be used to assess the seasonal and interannual transparency of the surface waters of Lake Baikal.
Keywords
About the authors
E. V. Boldanova
Baikal State University
Author for correspondence.
Email: boldanova@mail.ru
Russian Federation, 11, Lenin St., Irkutsk, 664003
References
- Bonansea M., Ledesma M., Bazán R. et al. 2019. Evaluating the feasibility of using Sentinel-2 imagery for water clarity assessment in a reservoir. Journal of South American Earth Sciences 95: 102-265. doi: 10.1016/j.jsames.2019.102265
- Delegido J., Urrego E.P., Vicente E. et al. 2019. Turbidez y profundidad de disco de Secchi con Sentinel-2 en embalses con diferente estado tróficoen la Comunidad Valenciana. Revista de Teledetección [Remote Sensing Journal] 0(54): 15-24. doi: 10.4995/raet.2019.12603 (in Spanish)
- Dontsov A.A., Pestunov I.A., Rylov S.A. et al. 2017a. Automated monitoring of the areas of water areas of lakes and reservoirs using satellite data. In: International Scientific Conference “Interexpo GEO-Siberia”, pp. 38-45.
- Dontsov A.A., Sutorikhin I.A. 2017b. Specialized geoinformation system for automated monitoring of rivers and reservoirs. Vychislitel’nyye Tekhnologii [Computational Technologies] 22(5): 39-46. (in Russian)
- Dontsov A.A., Sutorikhin I.A. Geographic information system for registration of hydrological parameters of inland water bodies. 2018. In: International Scientific Conference “Interexpo GEO-Siberia”, pp. 74-80.
- Gray J.S. Eutrophication in the Sea. 1992. In: Colombo G., Ferrari I., Ceccherelli V.U. et al. (Eds.), Marine eutrophication and population dynamics: Proceedings of 25th European Marine Biology Symposium. Fredensborg: Olsen and Olsen, pp. 3–16.
- Ismail K., Boudhar A., Abdelkrim A. et al. 2019. Evaluating the potential of Sentinel-2 satellite images for water quality characterization of artificial reservoirs: The Bin El Ouidane Reservoir case study (Morocco). Meteorology, Hydrology and Water Management 7: 31-39. doi: 10.26491/mhwm/95087
- Kutyavina T.I., Rutman V.V., Ashikhmina T.Ya. et al. 2019. The use of satellite images to determine the boundaries of water bodies and study the processes of eutrophication. Teoreticheskaya i Prikladnaya Ekologiya [Theoretical and Applied Ecology] 3: 28-33. doi: 10.25750/1995-4301-2019-3-028-033 (in Russian)
- Kutyavina T.I., Kantor G.Ya., Ashikhmina T.Ya. et al. 2020. Application of methods for processing and analysis of satellite images for the study of eutrophied reservoirs (review). Teoreticheskaya i Prikladnaya Ekologiya [Theoretical and Applied Ecology] 2: 14-25. doi: 10.25750/1995-4301-2020-2-014-025 (in Russian)
- U.S. Geological Survey (URL: https://landsat.gsfc.nasa.gov/wp-content/uploads/2015/06/Landsat.v.Sentinel-2.png)
Supplementary files
