Hydroacoustic studies of macrozooplankton in Lake Baikal
- Authors: Makarov M.M.1, Dzyuba E.V.1, Zaydykov I.Y.1, Naumova E.Y.1
-
Affiliations:
- Limnological Institute Siberian Branch of the Russian Academy of Sciences
- Issue: No 6 (2024)
- Pages: 1491-1502
- Section: Articles
- URL: https://journals.rcsi.science/2658-3518/article/view/283131
- DOI: https://doi.org/10.31951/2658-3518-2024-A-6-1491
- ID: 283131
Cite item
Full Text
Abstract
A hydroacoustic survey of the distribution of aggregations of Macrohectopus branickii (Amphipoda) in Barguzinsky Bay of Lake Baikal was conducted for the first time in the last 30 years. The hydroacoustic complex “Echo-Baikal” was used in the research. Verification of hydroacoustic data is based on the results of synchronous net catches with a JOM net. The present study demonstrates that macrohectopus aggregations are confined to slope zone areas with depths of 100–150 m. The dependence between the strength of the mean volume backscattering and the density of macrohectopus was obtained, based on which its biomass in Barguzinsky Bay was estimated at 2.7·106 kg.
Keywords
About the authors
M. M. Makarov
Limnological Institute Siberian Branch of the Russian Academy of Sciences
Email: e_dzuba@lin.irk.ru
ORCID iD: 0000-0002-1758-4458
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033
E. V. Dzyuba
Limnological Institute Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: e_dzuba@lin.irk.ru
ORCID iD: 0000-0002-0769-694X
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033
I. Yu. Zaydykov
Limnological Institute Siberian Branch of the Russian Academy of Sciences
Email: e_dzuba@lin.irk.ru
ORCID iD: 0000-0001-6669-682X
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033
E. Yu. Naumova
Limnological Institute Siberian Branch of the Russian Academy of Sciences
Email: e_dzuba@lin.irk.ru
ORCID iD: 0000-0001-5829-9138
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033
References
- Bekman M.Yu., Afanas’eva E.L. 1977. Distribution and production of Macrohectopus. In: Bekman M.Yu. (Ed.), Biological Productivity of the Baikal Pelagic Zone and Its Variability. Novosibirsk, pp. 76-98. (in Russian)
- Briseño-Avena C., Roberts P.L.D., Franks P.J.S. et al. 2015. ZOOPS- O2: A broadband echosounder with coordinated stereo optical imaging for observing plankton in situ. Methods in Oceanography 12: 36-54. doi: 10.1016/j.mio.2015.07.001
- Chacate O.E., Coetzee J.C., Axelsen B.E. 2024. Hydro-acoustic classification and abundance estimation of mesopelagic fish in deep scattering layers (DSL) of the Indian Ocean. ICES Journal of Marine Science 0: 1-15. doi: 10.1093/icesjms/fsae028
- Didorenko S.I., Botvinkin A.D., Takhteev V.V. 2020. A new, original trophic relationship in the Lake Baikal ecosystem: the pelagic amphipod, Macrohectopus branickii (Crustacea, Amphipoda) and Myotis petax bats (Mammalia, Chiroptera). Russian Journal of Zoology 99(10): 1140-1147. doi: 10.31857/S0044513420100050
- Domysheva V.M., Pestunov D.A., Sakirko M.V. et al. 2016. Carbon dioxide, oxygen and biogenic elements in the water under ice of the South Baikal littoral. Optika Atmosfery i Okeana [Atmospheric and Oceanic Optics] 29(12): 1073-1079. doi: 10.15372/AOO20161211 (in Russian)
- Dunn M.B., Pedersen G., Basedow S.L. et al. 2022. Inverse method applied to autonomous broadband hydroacoustic survey detects higher densities of zooplankton in near-surface aggregations than vessel-based net survey. Canadian Journal of Fisheries and Aquatic Sciences 80(3): 451-467. doi: 10.1139/cjfas-2022-0105
- Føre M., Frank K., Norton T. et al. 2018. Precision fish farming: a new framework to improve production in aquaculture. Biosystems Engineering 173: 176-193. doi: 10.1016/j.biosystemseng.2017.10.014
- Greenlaw C.F. 1977. Backscattering spectra of preserved zooplankton. The Journal of the Acoustical Society of America 62(1): 44-52. doi: 10.1121/1.381503
- Hembre L.K., Megard R.O. 2003. Seasonal and diel patchiness of a Daphnia population: an acoustic analysis. Limnology and Oceanography 48: 2221-2233. doi: 10.4319/lo.2003.48.6.2221
- Holbrook B.V., Hrabik T.R., Branstrator D.K. et al. 2006. Hydroacoustic estimation of zooplankton biomass at two shoal complexes in the Apostle Islands Region of Lake Superior. Journal of Great Lakes Research 32(4): 680-696. doi: 10.3394/0380-1330(2006)32[680:HEOZBA]2.0.CO;2
- Karnaukhov D.Yu., Biritskaya S.A., Maslennikova M.A. et al. 2019. The abundance and structure of population of pelagic amphipod Macrohectopus branickii in the coastal zone of Lake Baikal. Acta Biologica Sibirica 5(3): 154-158. doi: 10.14258/abs.v5.i3.6574
- Karnaukhov D.Yu., Dolinskaya E.M., Biritskaya S.A. et al. 2021. New data regarding ecology of freshwater pelagic amphipod Macrohectopus branickii and other crustaceans of plankton from the southern part of Lake Baikal. Acta Biologica Sibirica 7: 39-48. doi: 10.3897/abs.7.e65636
- Lertvilai P., Jaffe J.S. 2022. In situ size and motility measurement of aquatic invertebrates with an underwater stereoscopic camera system using tilted lenses. Methods in Ecology and Evolution 13: 1192-1200. doi: 10.1111/2041-210X.13855
- Lertvilai P. 2020. The in situ plankton assemblage eXplorer (IPAX): an inexpensive underwater imaging system for zooplankton study. Methods in Ecology and Evolution 11: 1042-1048. doi: 10.1111/2041-210x.13441
- Liu J., Tang Y. 2024. Monitoring two typical marine zooplankton species using acoustic methods in the South China Sea. Sensors 24: 4827. doi: 10.3390/s24154827
- Makarov M.M., Muyakshin S.I., Kucher K.M. et al. 2020. A study of the gas seep Istok in the Selenga shoal using active acoustic, passive acoustic and optical methods. Journal of Great Lakes Research 46(1): 95-101. doi: 10.1016/j.jglr.2019.10.014
- Mallet D., Olivry M., Ighiouer S. et al. 2021. Nondestructive monitoring of soft bottom fish and habitats using a standardized, remote and unbaited 360° video sampling method. Fishes 6(4): 50. doi: 10.3390/fishes6040050
- Megard R.O., Kuns M.M., Whiteside M.C. et al. 1997. Spatial distributions of zooplankton during coastal upwelling in western Lake Superior. Limnology and Oceanography 42: 827-840. doi: 10.4319/lo.1997.42.5.0827
- Melnik N.G., Timoshkin O.A., Sideleva V.G. et al. 1993. Hydroacoustic measurement of the density of the Baikal macrozooplankter Macrohectopus branickii. Limnology and Oceanography 38(2): 425-434. doi: 10.4319/lo.1993.38.2.0425
- Mel’nik N.G., Timoshkin O.A., Sideleva V.G. 1995. Raspredeleniye M. branickii i nekotoryye osobennosti yego ekologii [Distribution of M. branickii and some features of its ecology]. In: Timoshkin O.A. (Ed.), Atlas i opredelitel’ pelagobiontov Baikala (s kratkimi ocherkami po ikh ekologii) [Atlas and Keys to Baikal Pelagobionts (with Brief Essays on Their Ecology)]. Novosibirsk, pp. 511-522. (in Russian)
- Naumova E.Yu., Zaidykov I.Yu., Makarov M.M. 2020. Recent quantitative values of Macrohectopus branickii (Dyb.) (Amphipoda) from Lake Baikal. Journal of Great Lakes Research 46(1): 48-52. doi: 10.1016/j.jglr.2019.10.002
- Oh W.S., Park G.C., Choi J.H. et al. 2023. Density estimation of euphausiids and copepods by using a multi-frequency method. Fisheries and Aquatic Science 26(12): 689-697. doi: 10.47853/FAS.2023.e61
- Order of the Ministry of Agriculture of the Russian Federation of November 7, 2014 N 435. 2017. «On approval of fishing rules for the Baikal fishery basin». URL: http://base.garant.ru/70818098/ (accessed 15.01.2020) (in Russian)
- Petrov E.A., Kupchinsky A.B., Fialkov V.A. et al. 2021. The importance of the shore in the life of the Baikal seal (Pusa sibirica Gmelin 1788, Pinnipedia) 2. Rookery behavior. Russian Journal of Zoology 100(6): 671-685. doi: 10.31857/S0044513421060106
- Rudstam L.G., Melnik N.G., Timoshkin O.A. et al. 1992. Daily dynamics of an aggregation of Macrohectopus branickii (Dyb.) (Amphipoda, Gammaridae) in Barguzin Bay, Lake Baikal Russia. Journal of Great Lakes Research 18(2): 286-297. doi: 10.1016/S0380-1330(92)71296-9
- Sato M., Benoit-Bird K.J. 2019. Biological-physical coupling in a highly adjective ecosystem: Through a lens of diel vertical migration. The Journal of the Acoustical Society of America 146 (4): 2898. doi: 10.1121/1.5137056
- Simrad A.S. 2003. Reference manual: Simrad EK60. Scientific echo sounder system.
- Smirnov V.V., Smirnova-Zalumi N.S., Sukhanova L.V. et al. 2015. Measures to preserve the stocks of the Baikal omul Coregonus migratorius. Vestnik rybokhozyaystvennoy nauki [Bulletin of fisheries science] 4: 42-45. (in Russian)
- Sokolov A.V., Peterfeld V.A. 2018. About the reasons of a ban on commercial fishing of omul (Coregonus autumnalis migratorius, Georgi) in Lake Baikal in the modern period. In: VII Baltic Maritime Forum. Kaliningrad, pp. 158–164. (in Russian)
- Sorokovikova L.M., Tomberg I.V., Sinyukovich V.N. et al. 2010. Pecuiarities of formation of the mixing zone of river and lake waters in Barguzinsky bay of Lake Baikal. In: The Fifth Vereshchagin Baikal Conference, Irkutsk, pp. 256-258.
- Watanabe Y.Y., Baranov E.A., Miyazaki N. 2020. Ultrahigh foraging rates of Baikal seals make tiny endemic amphipods profitable in Lake Baikal. Proceedings of the National Academy of Sciences USA 117(49): 31242-31248. doi: 10.1073/pnas.2014021117
Supplementary files
