Genetic diversity of freshwater diatom algae populations Ulnaria danica (Kützing) Compère & Bukhtiyarova and Ulnaria ulna (Nitzsch) Compère

Cover Page

Cite item

Full Text

Abstract

Araphid diatoms of the genus Ulnaria are the dominant species in many freshwater ecosystems of Eurasia. Diatom populations are genetically heterogeneous and represent a combination of different genotypes. Genetic diversity is a necessary factor for adaptation to different environmental conditions and successful dispersal of species. We were analyzed the genetic diversity of the species Ulnaria danica and Ulnaria ulna using the example of monoclonal strains isolated from geographically distant water bodies of the continental part of Eurasia: Lake Ritsa, Lake Goluboe and Lake Baikal. Phylogenetic analysis of cox1 gene fragments of the studied strains demonstrated for the first time the heterogeneity of populations and the absence of geographic isolation for individual genotypes of the studied species. By analyzing the 18S rRNA marker genes, rbcL and cox1, the possibility of horizontal gene transfer between closely related species Fragilaria radians, Ulnaria acus, U. danica and U. ulna was established.

About the authors

A. M. Marchenkov

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: marchenkov.am@bk.ru
ORCID iD: 0000-0002-4820-9394
Russian Federation, 3 Ulan-Batorskaya Str., Irkutsk, 664033

M. A. Nalimova

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: marchenkov.am@bk.ru
ORCID iD: 0009-0008-2458-6495
Russian Federation, 3 Ulan-Batorskaya Str., Irkutsk, 664033

Yu. R. Zakharova

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: marchenkov.am@bk.ru
ORCID iD: 0000-0003-2075-1269
Russian Federation, 3 Ulan-Batorskaya Str., Irkutsk, 664033

N. A. Davidovich

T.I. Vyazemsky Karadag Scientific Station of A.O. Kovalevskii Institute of Biology of the Southern Seas of the Russian Academy of Sciences

Email: marchenkov.am@bk.ru
ORCID iD: 0000-0002-3510-0453
Russian Federation, 24 Nauki Str., Kurortnoe, Feodosia, 298188

O. I. Davidovich

T.I. Vyazemsky Karadag Scientific Station of A.O. Kovalevskii Institute of Biology of the Southern Seas of the Russian Academy of Sciences

Email: marchenkov.am@bk.ru
ORCID iD: 0000-0003-3024-0104
Russian Federation, 24 Nauki Str., Kurortnoe, Feodosia, 298188

Yu. A. Podunay

T.I. Vyazemsky Karadag Scientific Station of A.O. Kovalevskii Institute of Biology of the Southern Seas of the Russian Academy of Sciences

Email: marchenkov.am@bk.ru
ORCID iD: 0000-0002-0519-2908
Russian Federation, 24 Nauki Str., Kurortnoe, Feodosia, 298188

D. P. Petrova

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: marchenkov.am@bk.ru
ORCID iD: 0000-0002-5594-504X
Russian Federation, 3 Ulan-Batorskaya Str., Irkutsk, 664033

References

  1. Aboal M., Alvarez-Cobelas M., Cambra J. et al. 2003. Floristic list of non-marine diatoms (Bacillariophyceae) of Iberian Peninsula, Balearic Islands, and Canary Islands. Updated taxonomy and bibliography. Diatom Monographs 4: 39.
  2. Alvarez N., Benrey B., Hossaert-McKey M. et al. 2006. Phylogeographic support for horizontal gene transfer involving sympatric bruchid species. Biology Direct 1: 1-11. doi: 10.1186/1745-6150-1-21
  3. Armbrust E.V., Galindo H.M. 2001. Rapid evolution of a sexual reproduction gene in centric diatoms of the genus Thalassiosira. Applied and Environmental Microbiology 0: 3501–13. doi: 10.1128/AEM.67.8.3501-3513.2001
  4. Benoiston A.S., Ibarbalz F.M., Bittner L. et al. 2017. The evolution of diatoms and their biogeochemical functions. Philosophical Transactions of the Royal Society B: Biological Sciences 372(1728): 20160397. doi: 10.1098/rstb.2016.0397
  5. Buesseler K.O. 1998. The decoupling of production and particulate export in the surface ocean. Global Biogeochemical Cycles 12(2): 297–310. doi: 10.1029/97GB03366
  6. Chen G., Rynearson T.A. 2016. Genetically distinct populations of a diatom co‐exist during the North Atlantic Spring bloom. Limnology and Oceanography 61(6): 2165-2179. doi: 10.1002/lno.10361
  7. Delahodde A., Goguel V., Becam A.M. et al. 1989. Site-specific DNA endonuclease and RNA maturase activities of two homologous intron-encoded proteins from yeast mitochondria. Cell 56: 431-441.
  8. Ehara M., Watanabe K.I., Ohama T. 2000. Distribution of cognates of group II introns detected in mitochondrial cox1 genes of a diatom and a haptophyte. Gene 256(1-2): 157-167. doi: 10.1016/S0378-1119(00)00359-0
  9. Evans K.M., Hayes P.K. 2004. Microsatellite markers for the cosmopolitan marine diatom Pseudo‐nitzschia pungens. Molecular Ecology Notes 4(1): 125–126. doi: 10.1111/j.1471-8286.2004.00591.x
  10. Evans K.M., Wortley A.H., Mann D.G. 2007. An assessment of potential diatom «barcode» genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158(3): 349–364. doi: 10.1016/j.protis.2007.04.001
  11. Field C.B. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237–240. doi: 10.1126/science.281.5374.237
  12. Finlay B.J., Monaghan E.B., Maberly S.C. 2002. Hypothesis: The Rate and Scale of Dispersal of Freshwater Diatom Species is a Function of their Global Abundance. Protist 153: 261-273. doi: 10.1078/1434-4610-00103
  13. Garcia L.E., Edera A.A., Palmer J.D. et al. 2021. Horizontal gene transfers dominate the functional mitochondrial gene space of a holoparasitic plant. New Phytologist 229(3): 1701-1714. doi: 10.1111/nph.16926
  14. Godhe A., McQuoid M.R., Karunasagar I. et al. 2006. Comparison of three common molecular tools for distinguishing among geographically separated clones of the diatom Skeletonema marinoi Sarno et Zingone (Bacillariophyceae). Journal of phycology 42(2): 280-291. doi: 10.1111/j.1529-8817.2006.00197.x
  15. Godhe A., Rynearson T. 2017. The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments. Philosophical Transactions of the Royal Society B: Biological Sciences 372(1728): 20160399. doi: 10.1098/rstb.2016.0399
  16. Guindon S., Dufayard J.F., Lefort V. et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology 59(3): 307-321. doi: 10.1093/sysbio/syq010
  17. Guiry M.D. Guiry G.M. 2024. AlgaeBase. World-wide electronic publication, University of Galway. URL: https://www.algaebase.org (searched on 31.10. 2024).
  18. Guo L., Sui Z., Zhang S. et al. 2015. Comparison of potential diatom «barcode» genes (the 18S rRNA gene and ITS, COI, rbcL) and their effectiveness in discriminating and determining species taxonomy in the Bacillariophyta. International journal of systematic and evolutionary microbiology 65: 1369-1380. doi: 10.1099/ijs.0.000076
  19. Hamsher S.E., Evans K.M., Mann D.G. et al. 2011. Barcoding diatoms: exploring alternatives to COI-5P. Protist 162(3): 405-422. doi: 10.1016/j.protis.2010.09.005
  20. Hoang D.T., Chernomor O., Von Haeseler A. et al. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Molecular biology and evolution 35(2): 518-522. doi: 10.1093/molbev/msx281
  21. Jewson D.H. 1992. Size reduction, reproductive strategy and the life cycle of a centric diatom. Philosophical Transactions of the Royal Society B 335:191–213. doi: 10.1098/rstb.1992.0056
  22. Kalyaanamoorthy S., Minh B.Q., Wong T.K.F. et al. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587-589. doi: 10.1038/nmeth.4285
  23. Katana A., Kwiatowski J., Spalik K. et al. 2001. Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA. Journal of phycology 37(3): 443-451. doi: 10.1046/j.1529-8817.2001.037003443.x
  24. Kavanaugh L.A., Fraser J.A., Dietrich F.S. 2006. Recent evolution of the human pathogen Cryptococcus neoformans by intervarietal transfer of a 14-gene fragment. Molecular Biology and Evolution 23: 1879-1890. doi: 10.1093/molbev/msl070
  25. Keeling P., Palmer J. 2008. Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics 9: 605-618. doi: 10.1038/nrg2386
  26. Kochoska H., Chardon C., Chonova T. et al. 2023. Filling reference libraries with diatom environmental sequences: strengths and weaknesses. Diatom Research 38(2): 103-127. doi: 10.1080/0269249X.2023.2237977
  27. Lange-Bertalot H., Ulrich S. 2014. Contributions to the taxonomy of needle–shaped Fragilaria and Ulnaria species. Lauterbornia 78: 1-73.
  28. Malviya S., Scalco E., Audic S. et al. 2016. Insights into global diatom distribution and diversity in the world’s ocean. Proceedings of the National Academy of Sciences 113: E1516–E1525. doi: 10.1073/pnas.1509523113
  29. Mann D.G., Vanormelingen P. 2013. An inordinate fondness? The number, distributions, and origins of diatom species. Journal of eukaryotic microbiology 60(4): 414-420. doi: 10.1111/jeu.12047
  30. Marchenkov A.M., Petrova D.P., Morozov A.A. et al. 2018. A family of silicon transporter structural genes in a pennate diatom Synedra ulna subsp. danica (Kütz.) Skabitsch. PloS One 13(8): e0203161. doi: 10.1371/journal.pone.0203161
  31. Marchenkov A.M., Zakharova Y.R., Volokitina N.A. et al. 2022. Genotypic diversity of Ulnaria acus (Kützing) Aboal from Eurasia. Limnology and Freshwater Biology 6: 1705-1711. doi: 10.31951/2658-3518-2022-A-6-1705
  32. Minh B.Q., Schmidt H.A., Chernomor O. et al. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530-1534. doi: 10.1093/molbev/msaa015/
  33. Montresor M., Vitale L., D’Alelio D. et al. 2016. Sex in marine planktonic diatoms: insights and challenges. Perspectives in Phycology 3: 61-75. doi: 10.1127/pip/2016/0045
  34. Morozov A., Galachyants Y., Marchenkov A. et al. 2023. Revealing the Differences in Ulnaria acus and Fragilaria radians Distribution in Lake Baikal via Analysis of Existing Metabarcoding Data. Diversity 15(280): 1-10. doi: 10.3390/d15020280
  35. Morozov A.A., Galachyants Y.P. 2019. Diatom genes originating from red and green algae: Implications for the secondary endosymbiosis models. Marine Genomics 45: 72-78. doi: 10.1016/j.margen.2019.02.003
  36. Nelson D.M., Tréguer P., Brzezinski M.A. et al. 1995. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles 9: 359-372. doi: 10.1029/95GB01070
  37. Podunay Y.A., Davidovich O.I., Davidovich N.A. 2021. Reproductive compatibility of European populations of two species of Ulnaria (Bacillariophyta). Moscow University Biological Sciences Bulletin 76(2): 59-64. doi: 10.3103/S009639252102005X
  38. Podunay Y.A. 2022. Sexual reproduction, crossing system and biogeography of representatives of the genus Ulnaria (Bacillariophyta). Cand. Sc. Dissertation, Institute of biology of the south sea named A.O. Kovalevsky RAS, Sevastopol, Russia. (in Russian)
  39. Pérez-Burillo J., Trobajo R., Leira M. et al. 2021. DNA metabarcoding reveals differences in distribution patterns and ecological preferences among genetic variants within some key freshwater diatom species. Science of The Total Environment 798(149029): 0048-9697. doi: 10.1016/j.scitotenv.2021.149029
  40. Rengefors K., Kremp A., Reusch T.B.H. et al. 2017. Genetic diversity and evolution in eukaryotic phytoplankton: Revelations from population genetic studies. Journal of Plankton Research 39: 165-179. doi: 10.1093/plankt/fbw098
  41. Rynearson T.A., Armbrust E.V. 2005. Maintenance of clonal diversity during a spring bloom of the centric diatom Ditylum brightwellii. Molecular Ecology 14(6): 1631-1640. doi: 10.1111/j.1365-294X.2005.02526.x
  42. Rynearson T.A., Bishop I.W., Collins S. 2022. The population genetics and evolutionary potential of diatoms. The molecular life of diatoms. Cham: Springer International Publishing: 29-57. doi: 10.1007/978-3-030-92499-7_2
  43. Rynearson T.A., Newton J.A., Armbrust E.V. 2006. Spring bloom development, genetic variation and population succession in the planktonic diatom Ditylum brightwellii. Limnology and Oceanography 51: 1249-1261. doi: 10.4319/lo.2006.51.3.1249
  44. Rynearson T.A., Virginia Armbrust E. 2004. Genetic differentiation among populations of the planktonic marine diatom Ditylum brightwellii (Bacillariophyceae). Journal of Phycology 40(1): 34-43. doi: 10.1046/j.1529-8817.2004.03089.x
  45. Sanchez-Puerta M.V., Abbona C.C., Zhuo S. et al. 2011. Multiple recent horizontal transfers of the cox1 intron in Solanaceae and extended co-conversion of flanking exons. BMC evolutionary biology 11: 1-15. doi: 10.1186/1471-2148-11-277
  46. Sarthou G., Timmermans K.R., Blain S. et al. 2005. Growth physiology and fate of diatoms in the ocean: a review. Journal of Sea Research 53(1–2): 25-42. doi: 10.1016/j.seares.2004.01.007
  47. Smetacek V. 1999. Diatoms and the ocean carbon cycle. Protist 150: 25-32. doi: 10.1016/S1434-4610(99)70006-4
  48. Szűcs M., Vahsen M.L., Melbourne B.A. et al. 2017. Rapid adaptive evolution in novel environments acts as an architect of population range expansion. Proceedings of the National Academy of Sciences 114(51): 13501-13506. doi: 10.1073/PNAS.1712934114
  49. Thompson A.S. 1988. Culture collection of algae and protozoa catalogue of strains. Ambleside, United Kingdom: Natural Environment Research Council, Freshwater Biological Association 164.
  50. Tréguer P., Nelson D.M., Van Bennekom A.J. et al. 1995. The silica balance in the world ocean: a reestimate. Science 268(5209): 375-379. doi: 10.1126/science.268.5209.37
  51. Tréguer P., Pondaven P. 2000. Silica control of carbon dioxide. Nature 406: 358-359. doi: 10.1038/35019236
  52. Tuji A., Williams D.M. 2013. Examination of types in the Fragilaria vaucheriae-intermedia species complex. Bulletin of the National Museum of Natural Science, series B, Botany 39(1): 1-9.
  53. Vanormelingen P., Evans K.M., Mann D.G. et al. 2015. Genotypic diversity and differentiation among populations of two benthic freshwater diatoms as revealed by microsatellites. Molecular Ecology 24(17): 4433-4448. doi: 10.1111/mec.13336
  54. Williams D.M., Blanco S. 2019. Studies on type material from Kützing’s diatom collection II: Synedra acus Kützing, Synedra arcus Kützing, their morphology, types and nomenclature. Diatom Research 34: 237-250. doi: 10.1080/0269249X.2020.1711534
  55. Williams D.M., Round F.E. 1987. Revision of the genus Fragilaria. Diatom Research 2: 267–288. doi: 10.1080/0269249X.1987.9705004
  56. Williams D.M. 2024. Ubiquitous names and ubiquitous species: examples from Synedra acus (Ulnaria acus), S. ulna (Ulnaria ulna) and S. goulardii (Ulnaria goulardii) Diatom Research: 1-12. doi: 10.1080/0269249X.2024.2412849
  57. Wolf K.K., Romanelli E., Rost B. et al. 2019. Company matters: The presence of other genotypes alters traits and intraspecific selection in an Arctic diatom under climate change. Global change biology 25(9): 2869-2884. doi: 10.1111/gcb.14675
  58. Zakharova Y., Marchenkov A., Petrova D. et al. 2023. Delimitation of Some Taxa of Ulnaria and Fragilaria (Bacillariophyceae) Based on Genetic, Morphological Data and Mating Compatibility. Diversity 15(271): 1-26. doi: 10.3390/d15020271
  59. Zakharova Y.R., Bedoshvili Y.D., Petrova D.P. et al. 2020. Morphological description and molecular phylogeny of two diatom strains from the genus Ulnaria (Kützing) Compere isolated from an ultraoligotrophic lake at the Pole of Cold in the Northern Hemisphere, Republic of Sakha (Yakutia), Russia. Cryptogamie, Algologie 41: 37-45. doi: 10.5252/cryptogamie-algologie2020v41a6
  60. Zhang C., Ma H., Sanchez-Puerta M.V. et al. 2020. Horizontal gene transfer has impacted cox1 gene evolution in Cassytha filiformis. Journal of Molecular Evolution 88: 361-371. doi: 10.1007/s00239-020-09937-1

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Марченков А.M., Налимова М.A., Захарова Ю.R., Давидович Н.A., Давидович О.I., Подунай Ю.A., Петрова Д.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».