“Diatoms: Life in Glass Houses” revisited: Updates and Comments
- Autores: Harbich T., Gordon R.1, Cohn S.A.2, Ashworth M.P.3, Annenkov V.V.4, Goessling J.W.5
-
Afiliações:
- Gulf Specimen Marine Lab & Aquarium
- DePaul University
- UTEX Culture Collection of Algae, Department of Molecular Biosciences, University of Texas at Austin
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences
- University of Aveiro
- Edição: Nº 6 (2024)
- Páginas: 1454-1470
- Seção: Articles
- URL: https://journals.rcsi.science/2658-3518/article/view/283126
- DOI: https://doi.org/10.31951/2658-3518-2024-A-6-1454
- ID: 283126
Citar
Texto integral
Resumo
The film “Diatoms: Life in Glass Houses”, produced in 2003, covers various aspects of this ecologically important class of algae, such as their occurrence, cell biology including cell division and reproduction, morphology, morphogenesis, motility, and the formation of colonies. The aim of this work is to review and comment on some of the aspects presented in the video in the light of current knowledge. Special attention will be given to the constraints imposed by the solid silica wall and how diatoms cope with them. No attempt is made to be comprehensive.
Sobre autores
T. Harbich
Autor responsável pela correspondência
Email: mail@thomas-harbich.de
ORCID ID: 0000-0002-9151-4052
Independent Researcher, Am Brüdenrain, Weissach im Tal
AlemanhaR. Gordon
Gulf Specimen Marine Lab & Aquarium
Email: mail@thomas-harbich.de
ORCID ID: 0000-0003-4970-9953
Estados Unidos da América, Panacea, FL 32346
S. Cohn
DePaul University
Email: mail@thomas-harbich.de
ORCID ID: 0009-0006-4166-6433
Estados Unidos da América, Chicago
M. Ashworth
UTEX Culture Collection of Algae, Department of Molecular Biosciences, University of Texas at Austin
Email: mail@thomas-harbich.de
ORCID ID: 0000-0002-4162-2004
Estados Unidos da América, Austin, Texas
V. Annenkov
Limnological Institute of the Siberian Branch of the Russian Academy of Sciences
Email: mail@thomas-harbich.de
ORCID ID: 0000-0002-6616-154X
Rússia, Irkutsk, 664033
J. Goessling
University of Aveiro
Email: mail@thomas-harbich.de
ORCID ID: 0000-0003-4877-3734
Laboratory for Innovation and Sustainability of Marine Biological Resources (ECOMARE), Centre for Environmental and Marine Studies (CESAM), Department of Biology
PortugalBibliografia
- Alicea B., Gordon R., Harbich T. et al. 2021. Towards a digital diatom: Image processing and deep learning analysis of Bacillaria paradoxa dynamic morphology. In: Cohn S.A., Manoylov K.M., Gordon R. (Eds.). Diatom Gliding Motility, pp. 223-248. doi: 10.1002/9781119526483.ch10
- Alicea B., Gordon R., Parent J. 2023. The psychophysical world of the motile diatom Bacillaria paradoxa. In: Pappas J.L. (Ed.). The Mathematical Biology of Diatoms. USA, pp. 229-263. doi: 10.1002/9781119751939.ch9
- Alverson A.J., Cannone J.J., Gutell R.R. et al. 2006. The evolution of elongate shape in diatoms. Journal of Phycology 42: 655-668. doi: 10.1111/j.1529-8817.2006.00228.x
- Amin S.A., Parker M.S., Armbrust E.V. 2012. Interactions between Diatoms and Bacteria. Microbiology and Molecular Biology Reviews 76: 667–684. doi: 10.1128/mmbr.00007-12
- Andresen S., Linnemann S.K., Ahmad Basri A.B. et al. 2024. Natural Frequencies of Diatom Shells: Alteration of Eigenfrequencies Using Structural Patterns Inspired by Diatoms. Biomimetics 9: 85. doi: 10.3390/biomimetics9020085
- Annenkov V.V., Basharina T.N., Danilovtseva E.N. et al. 2013. Putative silicon transport vesicles in the cytoplasm of the diatom Synedra acus during surge uptake of silicon. Protoplasma 250: 1147-1155. doi: 10.1007/s00709-013-0495-x
- Annenkov V.V., Gordon R., Zelinskiy S.N. et al. 2020. The probable mechanism for silicon capture by diatom algae: assimilation of polycarbonic acids with diatoms, is endocytosis a key stage in building of siliceous frustules? Journal of Phycology 56: 1729-1737. doi: 10.1111/jpy.13062
- Annenkov V.V., Zelinskiy S.N., Pal’shin V.A. et al. 2019. Coumarin based fluorescent dye for monitoring of siliceous structures in living organisms. Dyes and Pigments 160: 336-343. doi: 10.1016/j.dyepig.2018.08.020
- Annenkov V.V., Zelinskiy S.N., Pal’shin V.A. et al. 2024. Fluorescein-based vital dye for silicifying organisms. Dyes and Pigments 222: 11838. doi: 10.1016/j.dyepig.2023.111838
- Arbeloa T.L., Estévez M.J.T., Arbeloa F.L. et al. 1991. Luminescence properties of rhodamines in water/ethanol mixtures. Journal of Luminescence 48-49: 400-404. doi: 10.1016/0022-2313(91)90147-N
- Armstrong E., Dwyer C.O. 2015. Artificial opal photonic crystals and inverse opal structures- fundamentals and applications from optics to energy storage. Journal of materials chemistry C 3: 6109–6143. doi: 10.1039/c5tc01083g
- Ashworth M.P., Ruck E.C., Lobban C.S. et al. 2012. A revision of the genus Cyclophora and description of Astrosyne gen. nov. (Bacillariophyta), two genera with the pyrenoids contained within pseudosepta. Phycologia 51: 684-699. doi: 10.2216/12-004.1
- Avunie-Masala R., Movshovich N., Nissenkorn Y. et al. 2011. Phospho-regulation of kinesin-5 during anaphase spindle elongation. Journal of Cell Science 124: 873-878. doi: 10.1242/jcs.077396
- Bedoshvili Ye., Gneusheva K., Popova M. et al. 2018. Anomalies in the valve morphogenesis of the centric diatom alga Aulacoseira islandica caused by microtubule inhibitors. Biology Open 7: bio035519. doi: 10.1242/bio.035519
- Bedoshvili Ye.D., Bayramova E.M., Zakharova Yu.R. 2023. Changes in valve morphogenesis of Aulacoseira islandica by γ-tubulin inhibitor gatastatin. Limnology and Freshwater Biology 6: 180-189. doi: 10.31951/2658-3518-2023-A-6-180
- Behrenfeld M.J., Halsey K.H., Boss E. et al. 2021. Thoughts on the evolution and ecological niche of diatoms. Ecological Monographs 91: 1–25. doi: 10.1002/ecm.1457
- Benoiston A.S., Ibarbalz F.M., Bittner L. et al. 2017. The evolution of diatoms and their biogeochemical functions. Philosophical Transactions of the Royal Society B: Biological Sciences 372: 1-10. doi: 10.1098/rstb.2016.0397
- Bondoc K.G.V., Lembke C., Vyverman W. et al. 2016. Searching for a Mate: Pheromone-Directed Movement of the Benthic Diatom Seminavis robusta. Microbial Ecology 72: 287-294. doi: 10.1007/s00248-016-0796-7
- Bonifacino J.S., Neefjes J. 2017. Moving and positioning the endolysosomal system. Current Opinions in Cell Biology 47: 1-8. doi: 10.1016/j.ceb.2017.01.008
- Buchnik L., Abu-Abied M., Sadot E. 2015. Role of plant myosins in motile organelles: Is a direct interaction required? Journal of Integrated Plant Biology 57: 23-30. doi: 10.1111/jipb.12282
- Cartaxana P., Ruivo M., Hubas C. et al. 2011. Physiological versus behavioral photoprotection in intertidal epipelic and epipsammic benthic diatom communities. Journal of Experimental Marine Biology and Ecology 405(1-2): 120-127. doi: 10.1016/j.jembe.2011.05.027
- Cohn S.A., Dunbar S., Ragland R. et al. 2016. Analysis of light quality and assemblage composition on diatom motility and accumulation rate. Diatom Research 31: 1–12. doi: 10.1080/0269249x.2016.1193058
- Cohn S.A., Halpin D., Hawley N. et al. 2015. Comparative analysis of light-stimulated motility responses in three diatom species. Diatom Research 30: 213-225. doi: 10.1080/0269249x.2015.1058295
- Cohn S.A., Nash J., Pickett-Heaps J.D. 1989. The effect of drugs on diatom valve morphogenesis. Protoplasma 149: 130-143. doi: 10.1007/bf01322985
- Cohn S.A., Pickett-Heaps J.D. 1988. The effects of colchicine and dinitrophenol on the in vivo rates of anaphase A and B in the diatom Surirella. European Journal of Cell Biology 46: 523-530.
- Cohn S.A., Spurck T.P., Pickett-Heaps J.D. 1999. High energy irradiation at the leading tip of moving diatoms causes a rapid change of cell direction. Diatom Research 14: 193-206. doi: 10.1080/0269249X.1999.9705466
- Cohn S.A., Spurck T.P., Pickett-Heaps J.D. et al. 1989. Perizonium and Initial Valve formation in the diatom Navicula Cuspidata (Bacillariophycae). Journal of Phycology 25: 15-26. doi: 10.1111/j.0022-3646.1989.00015.x
- Cohn S.A., Warnick L., Timmerman B. 2021. Chapter 5: Photophobic Responses of Diatoms – Motility and Inter-Species Modulation. In: Cohn S.A., Manoylov K.M., Gordon R. (Eds.), Diatom Gliding Motility. Volume 2 in the series: Diatoms: Biology & Applications, pp. 111-134. doi: 10.1002/9781119526483.ch5
- Danilovtseva E.N., Palshin V.A., Zelinskiy S.N. et al. 2019. Fluorescent dyes for the study of siliceous sponges. Limnology and Freshwater Biology 5: 302-307. doi: 10.31951/2658-3518-2019-A-5-302
- Danilovtseva E.N., Verkhozina O.N., Zelinskiy S.N. et al. 2013. New fluorescent derivatives of oligopropylamines. ARKIVOC 3: 266-281. doi: 10.3998/ark.5550190.0014.320
- Davidovich N.A., Davidovich O.I., Podunay Y.A. et al. 2017. Ardissonea crystallina has a type of sexual reproduction that is unusual for centric diatoms. Scientific Reports 7: 14670. doi: 10.1038/s41598-017-15301-z
- Davutoglu M.G., Geyer V.F., Niese L. et al. 2024. Gliding motility of the diatom Craspedostauros australis coincides with the intracellular movement of raphid-specific myosins. Communications Biology 7(1): 1187. doi: 10.1038/s42003-024-06889-w
- Desclés J., Vartanian M., El Harrak A. et al. 2008. New tools for labeling silica in living diatoms. New Phytologist 177: 822-829. doi: 10.1111/j.1469-8137.2007.02303.x
- De Tommasi E., Chiara de Luca A. 2022. Diatom biosilica in plasmonics: applications in sensing, diagnostics and therapeutics. Biomedical Optics Express 13: 3080-3101. doi: 10.1364/BOE.457483
- Drum R.W., Gordon R., Bender R. et al. 1971. On weakly coupled diatomic oscillators: Bacillaria’s paradox resolved. Journal of Phycology 7(Suppl.): 13-14. WOS: A1971J826700061
- Drum R.W., Gordon R. 2003. Star Trek replicators and diatom nanotechnology. Trends in Biotechnology 21(8): 325-328. doi: 10.1016/S0167-7799(03)00169-0
- Duan Z., Tominaga M. 2018. Actin–myosin XI: an intracellular control network in plants. Biochemical and Biophysical Research Communications 506: 403-408. doi: 10.1016/j.bbrc.2017.12.169
- Fuhrmann T., Landwehr S., El Rharbi-Kucki M. et al. 2004. Diatoms as living photonic crystals. Applied Physics B 78: 257-260. doi: 10.1007/s00340-004-1419-4
- Funk G. 1919. Notizen über Meeresdiatomeen (Translation: Notes on marine diatoms). Berichte der Deutschen Botanischen Gesellschaft 37: 187-192.
- Fu W., Wichuk K., Brynjólfsson S. 2015. Developing diatoms for value-added products: challenges and opportunities. New Biotechnology 32(6): 547-551. doi: 10.1016/j.nbt.2015.03.016
- Ghobara M.M., Mazumder N., Vinayak V. et al. 2019. On light and diatoms: A photonics and photobiology review. In: Gordon R., Seckbach J. (Eds.), Diatoms: Fundamentals & Applications. USA, pp. 129-189. doi: 10.1002/9781119370741.ch7
- Ghobara M.M., Mousa A.M. 2019. Diatomite in Use: Nature, Modifications, Commercial Applications, and Prospective Trends. In: Gordon R., Seckbach J. (Eds.), Diatoms: Fundamentals and Applications. USA, pp. 471-510. doi: 10.1002/9781119370741
- Goessling J.W., Ashworth M.P., Ellegaard M. et al. 2024. Hypotheses on Frustule Functionalities: From Single Species Analysis to Systematic Approaches. In: Goessling J., Serôdio J.W., Lavaud J. (Eds.), Diatom Photosynthesis: From Primary Production to High Value Molecules. Wiley Scrivener, Beverly, Mass.
- Goessling J.W., Shanti Paul V., Santiago González A.A. et al. 2020. Biosilica slab photonic crystals as an alternative to cleanroom nanofabrication. Faraday Discussions 223: 261-277. doi: 10.1039/D0FD00031K
- Goessling J.W., Wardley W.P., Lopez-Garcia M. 2020. Highly Reproducible, Bio-Based Slab Photonic Crystals Grown by Diatoms. Advanced Science 7(10): 1903726. doi: 10.1002/advs.201903726
- Gordon R., Losic D., Tiffany M.A. et al. 2009. The Glass Menagerie: Diatoms for novel applications in nanotechnology. Trends in Biotechnology 27(2): 116-127. doi: 10.1016/j.tibtech.2008.11.003
- Gordon R. 2021. The whimsical history of proposed motors for diatom motility. In: Cohn S.A., Manoylov K.M., Gordon R. (Eds.), Diatom Gliding Motility. USA, pp. 335-420. doi: 10.1002/9781119526483.ch14
- Gordon R. 2024. In: Gordon R., Seckbach J. (Eds.), Origin of Life via Archaea: Shaped Droplets to Archaea First, With a Compendium of Archaea Micrographs [OOLA, Volume in the series Astrobiology Perspectives on Life of the Universe, Eds. Richard Gordon & Joseph Seckbach]. Wiley-Scrivener, Beverly, Massachusetts. USA.
- Gómez F., Wang L., Lin S. 2018. Morphology and molecular phylogeny of epizoic araphid diatoms on marine zooplankton, including Pseudofalcula hyalina gen. & comb. nov. (Fragilariophyceae, Bacillariophyta). Journal of Phycology 54: 557-570. doi: 10.1111/jpy.12760
- Hamm C.E., Merkel R., Springer O. et al. 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421: 841-843. doi: 10.1038/nature01416
- Hannaford M.R., Rusan N.M. 2024. Positioning centrioles and centrosomes. Journal of Cell Biology 223: e202311140. doi: 10.1083/jcb.202311140
- Harbich T. 2023. Modeling the Synchronization of the Movement of Bacillaria paxillifer by a Kuramoto Model with Time Delay. In: Pappas J.L. (Ed.), The Mathematical Biology of Diatoms. USA, pp. 193-228. doi: 10.1002/9781119751939.ch8
- Harbich T. 2023. Pattern Formation in Diatoma vulgaris Colonies: Observations and Description by a Lindenmayer‐System. In: Pappas J.L. (Ed.), The Mathematical Biology of Diatoms. USA, pp. 265-290. doi: 10.1002/9781119751939.ch10
- Hildebrand M., Lerch S.J.L., Shrestha R.P. 2018. Understanding diatom cell wall silicification-moving forward. Frontiers in Marine Science 5: 1-19. doi: 10.3389/fmars.2018.00125
- Hildebrand M., Lerch S.J.L. 2015. Diatom silica biomineralization: Parallel development of approaches and understanding. Seminars in Cell and Developmental Biology 46: 27-35. doi: 10.1016/j.semcdb.2015.06.007
- Ingalls A.E., Whitehead K., Bridoux M.C. 2010. Tinted windows: The presence of the UV absorbing compounds called mycosporine-like amino acids embedded in the frustules of marine diatoms. Geochimica et Cosmochimica Acta 74: 104-115. doi: 10.1016/j.gca.2009.09.012
- Jahn R., Schmid A.M.M. 2007. Revision of the brackish-freshwater diatom genus Bacillaria Gmelin (Bacillariophyta) with the description of a new variety and two new species. European Journal of Phycology 42(3): 295-312. doi: 10.1080/09670260701428864
- Jin P., Beardall J., Gao K. 2024. Photosynthetic and Growth Responses of Planktonic Diatoms to Ocean Global Changes. In: Goessling J., Serôdio J.W. and Lavaud J. (Eds.), Diatom Photosynthesis: From Primary Production to High Value Molecules. Wiley Scrivener, Beverly, Mass.
- Jordan R., Ashworth M.P., Uezato Y. et al. 2019. Polyphyly and homoplasic structures in rhizosolenioid diatom genera: a review. Plant Ecology and Evolution 152: 142-149. doi: 10.5091/plecevo.2019.1599
- Kaczmarska I., Bates S.S., Ehrman J.M. et al. 2000. Fine structure of the gamete, auxospore and initial cell in the pennate diatom Pseudo-nitzschia multiseries. Nova Hedwigia 71: 337-357.
- Kaczmarska I., Gray Jr.B.S., Ehrman J.M. et al. 2017. Sexual reproduction in plagiogrammacean diatoms: First insights into the early pennates. PLoS ONE 12(8): e0181413. doi: 10.1371/journal.pone.0181413
- Kamakura S., Ashworth M.P., Yamada K. et al. 2022. Morphological plasticity in response to salinity change in the euryhaline diatom Pleurosira laevis (Bacillariophyta). Journal of Phycology 58: 631-642. doi: 10.1111/jpy.13277
- Kapinga M.R.M., Gordon R. 1987. Cell to cell communication in the gliding diatom Bacillaria. In: Proceedings of the Microscopical Society of Canada 14(12): 65-81.
- Kapinga M.R.M., Gordon R. 1992. Cell motility rhythms in Bacillaria paxillifer. Diatom Research 7(2): 221-225. doi: 10.1080/0269249X.1992.9705215
- Kapinga M.R.M. 1989. Observations on the Growth and Motile Behavior of the Colonial Diatom Bacillaria paradoxa in Culture [M.Sc.Thesis, Supervisor: R. Gordon]. Winnipeg: University of Manitoba. URL: https://mspace.lib.umanitoba.ca/bitstream/handle/1993/17075/Kapinga_Observations_on.pdf?sequence=1
- Karsenti E., Boleti H., Vernos I. 1996. The role of microtubule dependent motors in centrosome movements and spindle pole organization during mitosis. Seminars in Cell and Developmental Biology 7: 367-378. doi: 10.1006/scdb.1996.0046
- Keck F., Rimet F., Franc A. et al. 2016. Phylogenetic signal in diatom ecology: perspectives for aquatic ecosystems biomonitoring. Ecological Applications 26: 861-872. doi: 10.1890/14-1966
- Klapper F., Audoor S., Vyverman W. et al. 2021. Pheromone Mediated Sexual Reproduction of Pennate Diatom Cylindrotheca closterium. Journal of Chemical Ecology 47: 504-512. doi: 10.1007/s10886-021-01277-8
- Kooistra W.H.C.F., De Stefano M., Mann D.G. et al. 2003. Phylogenetic position of Toxarium, a pennate-like lineage within centric diatoms (Bacillariophyceae). Journal of phycology 39: 185-197. doi: 10.1046/j.1529-8817.2003.02083.x
- Krishnamurthy D., Li H., du Rey F.B. et al. 2019. Scale-free Vertical Tracking Microscopy: Towards Bridging Scales in Biological Oceanography. Biorxiv: 610246. doi: 10.1101/610246
- Krüger L.K., Gélin M., Ji L. et al. 2021. Kinesin-6 Klp9 orchestrates spindle elongation by regulating microtubule sliding and growth. eLife 10: e67489. doi: 10.7554/elife.67489
- Kucki M., Fuhrmann-Lieker T. 2012. Staining diatoms with rhodamine dyes: control of emission colour in photonic biocomposites. Journal of the Royal Society Interface 9: 727-733. doi: 10.1098/rsif.2011.0424
- Kurth E.G., Peremyslov V.V., Turner H.L. et al. 2017. Myosin-driven transport network in plants. Proceedings of the National Academy of Science 114: E1385–E1394. doi: 10.1073/pnas.1620577114
- Larson A.G., Chajwa R., Li H. et al. 2023. Inflation induced motility for long-distance vertical migration. bioRxiv: 2022.08.19.504465. doi: 10.1101/2022.08.19.504465
- Leblanc K., Quéguiner B., Diaz F. et al. 2018. Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nature communications 2018(9): 1-12. doi: 10.1038/s41467-018-03376-9
- Lechner C.C., Becker C.F.W. 2015. Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation. Marine Drugs 13: 5297-5333. doi: 10.3390/md13085297
- Lengyel E., Barreto S., Padisák J. et al. 2023. Contribution of silica-scaled chrysophytes to ecosystems services: a review. Hydrobiologia 850(12): 2735-2756. doi: 10.1007/s10750-022-05075-5
- Li C.W., Chu S., Lee M. 1989. Characterizing the silica deposition vesicle of diatoms. Protoplasma 151: 158-163. doi: 10.1007/BF01403453
- Lobban C.S., Ashworth M.P., Camacho T. et al. 2022. Revision of Ardissoneaceae (Bacillariophyta, Mediophyceae) from Micronesian populations, with descriptions of two new genera, Ardissoneopsis and Grunowago, and new species in Ardissonea, Synedrosphenia and Climacosphenia. PhytoKeys 208: 103-184. doi: 10.3897/phytokeys.208.89913
- Losic D., Rosengarten G., Mitchell J.G. et al. 2006. Pore Architecture of Diatom Frustules Potential Nanostructured Membranes for Molecular and Particle Separations. Journal of nanoscience and nanotechnology 6: 982-989. doi: 10.1166/jnn.2006.174
- Luís A.T., Vaché V., Choquet P. 2017. Atomic force microscopy (AFM) application to diatom study: review and perspectives. Journal of applied phycology 29: 2989-3001. doi: 10.1007/s10811-017-1177-4
- Marc J. 1997. Microtubule-organizing centres in plants. Trends in Plant Science 2: 223-230. doi: 10.1016/s1360-1385(97)89547-7
- Mayzel B., Aram L., Varsano N. et al. 2021. Structural evidence for extracellular silica formation by diatoms. Nature communications 12: 1-8. doi: 10.1038/s41467-021-24944-6
- Medlin L.K., Kaczmarska I. 2004. Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43: 245-270. doi: 10.2216/i0031-8884-43-3-245.1
- Medlin L.K., Sato S., Mann D.G. et al. 2008. Molecular evidence confirms sister relationship of Ardissonea, Climacosphenia, and Toxarium within the biopolar centric diatoms (Bacillariophyta, Mediophyceae), and cladistic analyses confirm that extremely elongated shape has arisen twice in the diatoms. Journal of Phycology 44: 1340-1348. doi: 10.1111/j.1529-8817.2008.00560.x
- Medlin L.K. 2009. The use of the terms centric and pennate. Diatom Research 24: 499-501. doi: 10.1080/0269249X.2009.9705818
- Moeys S., Frenkel J., Lembke C. et al. 2016. A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Scientific Reports 6: 19252. doi: 10.1038/srep19252
- Müller O.F. 1782. Von einem sonderbaren Wesen im Meerwasser, welches aus kleinen Stäbgen, durch deren mancherley Stellung es verschiedene Gestalten bildet, zu bestehen scheint. (Translation: About a strange creature in the sea water, which seems to consist of small sticks whose various positions cause it to form different shapes.) In: Goeze J.A.E. (Ed.), Otto Friedrich Müllers kleine Schriften aus der Naturhistorie. Dessau, 1(1), pp. 1–14.
- Nakov T., Beaulieu J.M., Alverson A.J. 2018. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). New Phytologist 219: 462-473. doi: 10.1111/nph.15137
- Pamirsky I.E., Golokhvast K.S. 2013. Silaffins of Diatoms: From Applied Biotechnology to Biomedicine. Marine Drugs 11: 3155-3167. doi: 10.3390/md11093155
- Pappas J.L., Tiffany M.A., Gordon R. 2021. The uncanny symmetry of some diatoms and not of others: A multi-scale morphological characteristic and a puzzle for morphogenesis. In: Annenkov V., Seckbach J., Gordon R. (Eds.), Diatom Morphogenesis. USA, pp.19-67. doi: 10.1002/9781119488170.ch2
- Petrova D.P., Morozov A.A., Potapova N.A. et al. 2023. Analysis of Predicted Amino Acid Sequences of Diatom Microtubule Center Components. International Journal of Molecular Science 24: 12781. doi: 10.3390/ijms241612781
- Pickett-Heaps J.D., Pickett-Heaps J. 2022. Diatoms: life in glass houses. Limnology and Freshwater Biology 1: 1209-1209. doi: 10.31951/2658-3518-2022-A-1-1209
- Pickett-Heaps J.D. 2003. Teacher‘s Guide, Diatoms: Life in Glass Houses (DVD film), Melbourne: Cytographics
- Rabiee N., Khatami M., Jamalipour Soufi G. et al. 2021. Diatoms with Invaluable Applications in Nanotechnology Biotechnology and Biomedicine: Recent Advances. ACS biomaterials science & engineering 7: 3053-3068. doi: 10.1021/acsbiomaterials.1c00475
- Raj Vansh Singh S., Kashyap K., Gordon R. 2023. RAPHE: Simulation of the dynamics of diatom motility at the molecular level - The domino effect hydration model with concerted diffusion. In: Pappas, J.L. (Ed.), The Mathematical Biology of Diatoms. USA, pp. 291-342. doi: 10.1002/9781119751939.ch8
- Rimet F., Abarca N., Bouchez A. et al. 2018. The potential of High–Throughput Sequencing (HTS) of natural samples as a source of primary taxonomic information for reference libraries of diatom barcodes. Fottea 18: 37-54. doi: 10.5507/fot.2017.013
- Rimet F., Bouchez A. 2012. Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowledge and management of Aquatic Ecosystems 406(01): 1-12. doi: 10.1051/kmae/2012018
- Rines J. 2001. Plankton Theater, Bacillaria paxillifera, a motile, colonial pennate diatom, Narragansett Bay, Rhode Island, Fall [movie]. URL: http://lin.irk.ru/nanochem/diatom_movies/films.html
- Round F.E., Crawford R.M., Mann D.G. 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge: Cambridge university press.
- Round F.E., Mann D.G. 1980. Psammodiscus nov. gen. based on Coscinodiscus nitidus. Annals of Botany 46: 367-373. doi: 10.1093/oxfordjournals.aob.a085926
- Sabnis R.W. 2015. Handbook of fluorescent dyes and probes. Hoboken: Wiley. doi: 10.1002/9781119007104
- Sato S., Beakes G., Idei M. et al. 2011. Novel Sex Cells and Evidence for Sex Pheromones in Diatoms. PLoS ONE 6(10): e26923. doi: 10.1371/journal.pone.0026923
- Sato S., Nagumo T., Tanaka J. 2004. Auxospore formation and the morphology of the Initial Cell of the marine araphid diatom Gephyria media (Bacillariophyceae). Journal of Phycology 40: 684-691. doi: 10.1111/j.1529-8817.2004.03164.x
- Schmid A.M.M. 2007. The “paradox” diatom Bacillaria paxillifer (bacillariophyta) revisited 1. Journal of Phycology 43(1): 139-155. doi: 10.1111/j.1529-8817.2006.00299.x
- Shimizu K., Del Amo Y., Brzezinski M.A. et al. 2001. A novel fluorescent silica tracer for biological silicification studies. Chemistry & Biology 8: 1051-1060. doi: 10.1016/S1074-5521(01)00072-2
- Soininen J., Teittinen A. 2019. Fifteen important questions in the spatial ecology of diatoms. Freshwater Biology 64: 1-13. doi: 10.1111/fwb.13384
- Sorhannus U., Fox M.G. 2012. Phylogenetic analyses of a combned data set suggest that the Attheya lineage is the closest living relative of the pennate diatoms (Bacillariophyceae). Protist 163: 252-262. doi: 10.1016/j.protis.2011.04.005
- Tanabe M., Ueno Y., Yokono M. et al. 2020. Changes in excitation relaxation of diatoms in response to fluctuating light, probed by fluorescence spectroscopies. Photosynthesis research. MEDLINE: 32067138. doi: 10.1007/s11120-020-00720-3
- Teixidó-Travesa N., Roig J., Lüders J. 2012. The where, when and how of microtubule nucleation – one ring to rule them all. Journal of Cell Science 125: 4445-4456. doi: 10.1242/jcs.106971
- Theriot E.C., Ashworth M.P., Nakov T. et al. 2015. Dissecting signal and noise in diatom chloroplast protein encoding genes with phylogenetic information profiling. Molecular Phylogenetics and Evolution 89: 28-36. doi: 10.1016/j.ympev.2015.03.012
- Tiffany M.A., Gordon R., Gebeshuber I.C. 2010.Hyalodiscopsis plana, a sublittoral centric marine diatom, and its potential for nanotechnology as a natural zipper-like nanoclasp [correction: Fig. 22 scale bar = 5 µm]. Polish Botanical Journal 55(1): 27-41.
- Ussing A.P., Gordon R., Ector L. et al. 2005. The colonial diatom ‘‘Bacillaria paradoxa’’: chaotic gliding motility, Lindenmeyer Model of colonial morphogenesis, and bibliography, with translation of O.F. Müller (1783), ‘About a peculiar being in the beach-water’. Diatom Monographs Vol. 5. Koenigstein: Koeltz Scientific Books.
- Visco J.A., Apothéloz-Perret-Gentil L., Cordonier A. et al. 2015. Environmental Monitoring: Inferring the Diatom Index from Next-Generation Sequencing Data. Environmental science & technology 49: 7597-7605. doi: 10.1021/es506158m
- Wardley W.P., Goessling J.W., Lopez-Garcia M. 2021. Plasmonic crystals with highly ordered lattice geometries using continuous metal films on diatom bio-silica as both scaffolds and sources of tuneability 1-22. doi: 10.48550/arXiv.2108.01602
- Wein H., Bass H.W., Cande W.Z. 1998. DSK1, a Kinesin-Related Protein Involved in Anaphase Spindle Elongation, Is a Component of a Mitotic Spindle Matrix. Cell Motility and the Cytoskeleton 41: 214-224.
- Williams D.M., Kociolek J.P. 2010. Classifications of convenience: the meaning of names. Diatom Research 25: 213-216. doi: 10.1080/0269249X.2010.9705840
- Williams D.M. 2019. Spines and homologues in ‘araphid’ diatoms. Plant Ecology and Evolution 152: 150-162. doi: 10.5091/plecevo.2019.1597
- Yablonovitch E. 1987. Inhibited spontaneous emission in solid-state physics and electronics. Physical review letters 58: 2059-2062. doi: 10.1103/PhysRevLett.58.2059
- Yamaoka N., Suetomo Y., Yoshihisa T. et al. 2016. Motion analysis and ultrastructural study of a colonial diatom, Bacillaria paxillifer. Microscopy 65(3): 211-221. doi: 10.1093/jmicro/dfv375
- Zhang B., Gao Y., Zhang L. et al. 2021. The plant cell wall: Biosynthesis, construction, and functions. Journal of Integrative Plant Biology 63(1): 251-272. doi: 10.1111/jipb.13055
Arquivos suplementares
