Comparing the efficiency of two water sampling methods for studying the content of microplastics in water bodies
- Authors: Tikhonova D.A.1,2, Shalunova E.P.2, Karetnikov S.G.1
-
Affiliations:
- St. Petersburg Federal Research Center of the Russian Academy of Sciences, Institute of Limnology of the Russian Academy of Sciences
- Saint Petersburg State University
- Issue: No 6 (2024)
- Pages: 1434-1453
- Section: Articles
- URL: https://journals.rcsi.science/2658-3518/article/view/283089
- DOI: https://doi.org/10.31951/2658-3518-2024-A-6-1434
- ID: 283089
Cite item
Full Text
Abstract
Due to the lack of a unified sampling methodology for studying microplastics, there are difficulties in comparing the results obtained when sampling using different methods. A comparison was made of a pump filtration system and a Manta trawl to assess their effectiveness and applicability in collecting water samples for studying microplastics content using the example of Lake Ladoga, the Svir River and small lakes in the Leningrad region (Sukhodolskoye, Michurinskoye, Krasnoye). The results supported that despite higher average microplastics concentrations when sampling with the pump system (8.5±11.5 particles/m3) compared to the Manta trawl (0.7±0.6 particles/m3), the data were comparable. The methods have opposite advantages and disadvantages and are complementary. The Manta trawl is more suitable for collecting large volumes of water from the surface layer relatively quickly and in conditions with high contents of suspended matter present. Meanwhile, the pump filtration system is suitable for collecting samples at different water layers and in the surface layer of water when there is a small content of suspended matter and provides more accurate estimating of the sample volume. It is necessary to ensure the sampling of a large volume of water, which in the case of a pump filtration system is only possible during the period when the plankton content and water turbidity are minimal.
About the authors
D. A. Tikhonova
St. Petersburg Federal Research Center of the Russian Academy of Sciences, Institute of Limnology of the Russian Academy of Sciences; Saint Petersburg State University
Author for correspondence.
Email: tdasha94@mail.ru
Russian Federation, Sevastyanova, 9, St. Petersburg, 196105; Universitetskaya nab., 7-9, St. Petersburg, 199034
E. P. Shalunova
Saint Petersburg State University
Email: tdasha94@mail.ru
Russian Federation, Universitetskaya nab., 7-9, St. Petersburg, 199034
S. G. Karetnikov
St. Petersburg Federal Research Center of the Russian Academy of Sciences, Institute of Limnology of the Russian Academy of Sciences
Email: tdasha94@mail.ru
Russian Federation, Sevastyanova, 9, St. Petersburg, 196105
References
- Acharya S., Rumi S.S., Hu Y. et al. 2021. Microfibers from synthetic textiles as a major source of microplastics in the environment: A review. Textile Research Journal 91 (17-18): 2136-2156. doi: 10.1177/0040517521991244
- Bagaev A., Mizyuk A., Khatmullina L. et al. 2017. Anthropogenic fibres in the Baltic Sea water column: Field data, laboratory and numerical testing of their motion. Science of The Total Environment 599-600: 560-571. doi: 10.1016/j.scitotenv.2017.04.185
- Campanale C., Savino I., Pojar I. et al. 2020. A Practical Overview of Methodologies for Sampling and Analysis of Microplastics in Riverine Environments. Sustainability 12(17): 6755. doi: 10.3390/su12176755
- Choy C.A., Robison B.H., Gagne T.O. et al. 2019. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Scientific Reports 9: 7843. doi: 10.1038/s41598-019-44117-2
- Dai Z., Zhang H., Zhou Q. et al. 2018. Occurrence of microplastics in the water column and sediment in an inland sea affected by intensive anthropogenic activities. Environmental Pollution 242: 1557-1565. doi: 10.1016/j.envpol.2018.07.131
- Dris R., Gasperi J., Rocher V. et al. 2018. Synthetic and non-synthetic anthropogenic fibers in a river under the impact of Paris Megacity: sampling methodological aspects and flux estimations. Science of The Total Environment 618: 157-164. doi: 10.1016/j.scitotenv.2017.11.009
- Du R., Sun X., Lin H. et al. 2022. Assessment of Manta trawling and two newly-developed surface water microplastic monitoring techniques in the open sea. Science of The Total Environment 842: 156803. doi: 10.1016/j.scitotenv.2022.156803
- Dusaucy J., Gateuille D., Perrette Y. et al. 2021. Microplastic pollution of worldwide lakes. Environmental Pollution 284: 117075. doi: 10.1016/j.envpol.2021.117075
- Egger M., Sulu-Gambari F., Lebreton L. 2020. First evidence of plastic fallout from the north pacific garbage patch. Scientific Reports 10: 7495. doi: 10.1038/s41598-020-64465-8
- Eo S., Hong S.H., Song Y.K. et al. 2019. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea. Water Research 160: 228-237. doi: 10.1016/j.watres.2019.05.053
- Ershova A.A., Eremina T.R., Dunayev A.L. et al. 2021. Study of microplastic pollution in the seas of the Russian Arctic and the Far East. Arktika: ekologiya i ekonomika [Arctic: Ecology and Economy] 11(2): 164-177. doi: 10.25283/2223-4594-2021-2-164-177 (in Russian)
- Frank Y.A., Ershova A.A., Vorobiev E.D. et al. 2024. Comparability of riverine microplastic sampling and processing techniques: intercalibration experiment for the Yenisei River. Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry 34: 89–105. doi: 10.17223/24135542/34/8
- Frank Y.A., Vorobiev D.S., Kayler O.A. et al. 2021. Evidence for Microplastics Contamination of the Remote Tributary of the Yenisei River, Siberia—The Pilot Study Results. Water 13(22): 3248. doi: 10.3390/w13223248
- Hale R.C., Seeley M.E., La Guardia M.J. et al. 2020. A Global Perspective on Microplastics. Journal of Geophysical Research - Oceans 125(1): 1-40. doi: 10.1029/2018JC014719
- Il’ina O.V., Kolobov M.Y., Il’inskii V.V. 2021. Plastic Pollution of the Coastal Surface Water in the Middle and Southern Baikal. Water Resourсes 48: 56–64. doi: 10.1134/S0097807821010188
- Ivanova E.V., Tikhonova D.A. 2022. Estimation of microplastic content in Lake Ladoga. Trudy Karelskogo nauchnogo centra RAN [Transactions of the Karelian Research Centre of the Russian Academy of Sciences] 6: 58-67. doi: 10.17076/lim1582 (in Russian)
- Karlsson T.M., Kärrman A., Rotander A. et al. 2020. Comparison between Manta trawl and in situ pump filtration methods, and guidance for visual identification of microplastics in surface waters. Environmental science and pollution research 27: 5559-5571. doi: 10.1007/s11356-019-07274-5
- Kooi M., Reisser J., Slat B. et al. 2016. The effect of particle properties on the depth profile of buoyant plastics in the ocean. Scientific Reports 6: 33882. doi: 10.1038/srep33882
- Lake Ladoga and the coastal remarkable sighThe Atlas ts.. 2015. In: Rumyantsev V.A. (Ed.). St. Petersburg: Nestor-Historia. (in Russian)
- Lenaker P.L., Baldwin A.K., Corsi S.R. et al. 2019. Vertical distribution of microplastics in the water column and surficial sediment from the Milwaukee River basin to Lake Michigan. Environmental Science & Technology 53: 12227-12237. doi: 10.1021/acs.est.9b03850
- Leusch F.D., Lu H.C., Perera K. et al. 2023. Analysis of the literature shows a remarkably consistent relationship between size and abundance of microplastics across different environmental matrices. Environmental Pollution 319: 120984. doi: 10.1016/j.envpol.2022.120984
- Leusch F.D.L., Ziajahromi S. 2021. Converting mg/L to Particles/L: Reconciling the Occurrence and Toxicity Literature on Microplastics. Environmental Science & Technology 55(17): 11470-11472. doi: 10.1021/acs.est.1c04093
- Liedermann M., Gmeiner P., Pessenlehner S. et al. 2018. A methodology for measuring microplastic transport in large or medium rivers. Water 10(4): 414. doi: 10.3390/w10040414
- Lindeque P.K., Cole M., Coppock R.L. et al. 2020. Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environmental Pollution 265: 114721. doi: 10.1016/j.envpol.2020.114721
- Montoto-Martínez T., Meléndez-Díez C., Melián-Ramírez A. et al. 2022. Comparison between the traditional Manta net and an innovative device for microplastic sampling in surface marine waters. Marine Pollution Bulletin 185(A): 114237. doi: 10.1016/j.marpolbul.2022.114237
- Pasquier G., Doyen P., Kazour M. et al. 2022. Manta Net: The Golden Method for Sampling Surface Water Microplastics in Aquatic Environments. Frontiers in Environmental Science 10: 811112. doi: 10.3389/fenvs.2022.811112
- Plastics EuroPlastics pe. - the Facts 2022. 2022. URL: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed 22 May 2024).
- Pozdnyakov Sh.R., Karetnikov S.G., Ivanova E.V. et al. 2021. Experience of using a filtration device for studying vertical distribution of microplastics in water column. Rossiiskii zhurnal prikladnoi ekologii [Russian Journal of Applied Ecology] 4(28): 41-45. doi: 10.24852/2411-7374.2021.4.41.45 (in Russian)
- Reisser J., Slat B., Noble K. et al. 2015. The vertical distribution of buoyant plastics at sea: an observational study in the North Atlantic Gyre. Biogeosciences 12(4): 1249. doi: 10.5194/bg-12-1249-2015
- Rezolyuciya I Vserossijskoj konferencii s mezhdunarodnym uchastiem po zagryazneniyu okruzhayushchej sredy mikroplastikom «MicroPlasticsEnvironment-2022» [Resolution of the 1st All-Russian Conference with international participation on environmental pollution with microplastics «MicroPlasticsEnvironment-2022»]. 2022. URL: http://microplasticsiberia.com/wp-content/uploads/2022/08/Резолюция_МРЕ-2022_fin.pdf (accessed 22 May 2024). (in Russian)
- Simon M., van Alst N., Vollertsen J. 2018. Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Research 142: 1-9. doi: 10.1016/j.watres.2018.05.019
- Song Y.K., Hong S.H., Eo S. et al. 2018. Horizontal and vertical distribution of microplastics in Korean coastal waters. Environmental Science & Technology 52: 12188-12197. doi: 10.1021/acs.est.8b04032
- Statistics Kingdom. 2017. URL: https://www.statskingdom.com/index.html (accessed 22 May 2024)
- Tamminga M., Fischer E.K. 2020. Microplastics in a deep, dimictic lake of the North German Plain with special regard to vertical distribution patterns. Environmental Pollution 267: 115507. doi: 10.1016/j.envpol.2020.11550
- Tamminga M., Stoewer S.-C., Fischer E.K. 2019. On the representativeness of pump water samples versus Manta sampling in microplastic analysis. Environmental pollution 254: 112970. doi: 10.1016/j.envpol.2019.112970
- Tikhonova D.A., Karetnikov S.G., Ivanova E.V. et al. 2024. The Vertical Distribution of Microplastics in the Water Column of Lake Ladoga. Water Resources 51: 146-153. doi: 10.1134/S009780782370063X
- Zobkov M.B., Esiukova E.E., Zyubinc A.Y. et al. 2019. Microplastic content variation in water column: The observations employing a novel sampling tool in stratified Baltic Sea. Marine Pollution Bulletin 138: 193-205. doi: 10.1016/j.marpolbul.2018.11.047
Supplementary files
