Catalytic Activity of Materials Based on Complex Hafnium Phosphates with the NASICON Structure in Ethanol Conversion


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Materials with a NASICON structure having the composition (NH4)1−xHxHf2(PO4)3 (x = 0–1) have been obtained by hydrothermal synthesis followed by heat treatment and by ion exchange and characterized by X-ray powder diffraction, low-temperature nitrogen adsorption, and scanning electron microscopy. The catalytic activity of the materials in the conversion of ethanol is studied. All synthesized samples are shown to exhibit activity in the dehydration of ethanol and, to a small extent, the dehydrogenation of ethanol. At low temperatures, the conversion of ethanol predominantly results in the formation of diethyl ether and, at higher temperatures, the reaction predominantly affords ethylene. The selectivity in diethyl ether formation reaches 96% with 60% conversion at 360°C on the ion exchange–produced material of HHf2(PO4)3 composition with a triclinic modification. At temperatures ≥450°C, the selective formation of ethylene is observed almost on all materials (~100%, with 100% conversion on NH4Hf2(PO4)3 with a rhombohedral modification at 450°C).

Sobre autores

M. Moshareva

Kurnakov Institute of General and Inorganic Chemistry

Email: yaroslav@igic.ras.ru
Rússia, Moscow, 119991

A. Il’in

Topchiev Institute of Petrochemical Synthesis

Email: yaroslav@igic.ras.ru
Rússia, Moscow, 119991

N. Zhilyaeva

Topchiev Institute of Petrochemical Synthesis

Email: yaroslav@igic.ras.ru
Rússia, Moscow, 119991

S. Novikova

Kurnakov Institute of General and Inorganic Chemistry

Email: yaroslav@igic.ras.ru
Rússia, Moscow, 119991

A. Yaroslavtsev

Kurnakov Institute of General and Inorganic Chemistry; Topchiev Institute of Petrochemical Synthesis

Autor responsável pela correspondência
Email: yaroslav@igic.ras.ru
Rússia, Moscow, 119991; Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017