Synthesis of sulfur-containing precursor of targeted lipoconjugates

Cover Page

Cite item

Full Text

Abstract

Objectives: To search for and develop a method for synthesizing sulfur-containing lipids based on 1,2-di-O-tetradecyl-rac-glycerol. Methods. Separation and purification of the obtained compounds were accomplished by column chromatography on silica gel and extraction. A combination of physicochemical analytical methods, including NMR-spectroscopy and mass-spectrometry, was used to confirm the structures of the obtained compounds. Results. A new method for synthesizing sulfur-containing precursors for targeted lipoconjugates has been developed. 1,2-di-O-tetradecyl-rac-glycerol with a tetraethylene glycol spacer was used as the hydrophobic domain. Divinyl sulfone was attached to the terminal amino group under basic conditions. However, proton signals from the dioxothiomorphonyl group were detected in the NMR spectra of the resulting compound, confirming the cyclization of the vinylsulfone group with primary amines. This problem can be solved by replacing divinyl sulfone with its analog with an ethylene glycol spacer, bis-vinylsulfone, and alkylating the primary amino group of the tetraethylene glycol spacer, since the formation of the dioxothiomorphonyl group is excluded from secondary amines. Conclusions. The interaction of divinyl sulfone with the primary amino group of a tetraethyleneglycol-containing lipid based on 1,2-di-O-tetradecyl-rac-glycerol was investigated. The resulting addition reaction product was further used to create CL and study the delivery of NAto target cells. The search for optimal synthesis conditions for producing vinyl sulfone-containing precursors of the targeted lipoconjugates will also continue.

About the authors

V. М Lipenskiy

Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University

Email: lipenskiy.v.m@gmail.com
ORCID iD: 0000-0002-3426-4915

E. V Shmendel

Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University

ORCID iD: 0000-0003-3727-4905

M. A Maslov

Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University

ORCID iD: 0000-0002-5372-1325

References

  1. Zhang X., Zhang P. Polymersomes in Nanomedicine – A Review // Current Nanoscience. 2016. Vol. 13. № 2. P. 124 – 129.
  2. Kubiak M. Dendrymery – fascynujące nanocząsteczki w zastosowaniu w medycynie // Chemik. 2014. Vol. 68, №2. P. 141 – 150.
  3. Kabilova T.O., Shmendel E.V., Gladkikh D.V., Chernolovskay E.L., Markov O.V., Morozova N.G., Maslova M.A., Zenkova M.A. Targeted delivery of nucleic acids into xenograft tumors mediated by novel folate-equipped liposomes // European Journal of Pharmaceutics and Biopharmaceutics. 2018. Vol. 123. P. 59 – 70.
  4. Hattori Y., Tamaki K., Ozaki K., Kawano K., Onishi H. Optimized combination of cationic lipids and neutral helper lipids in cationic liposomes for siRNA delivery into the lung by intravenous injection of siRNA lipoplexes // Journal of Drug Delivery Science and Technology. 2019. Vol. 52. P. 1042 – 1050.
  5. Markov O.V., Mironova N.L., Shmendel E.V., Serikov R.N., Morozova N.G., Maslov M.A., Vlassov V.V., Zenkova M.A. Multicomponent mannose-containing liposomes efficiently deliver RNA in murine immature dendritic cells and provide productive anti-tumour response in murine melanoma model // Journal of Controlled Release journal. 2015. Vol. 213. P. 45 – 56.
  6. Shmendel E., Kabilova T., Morozova N., Zenkova M., Maslov M. Effects of spacers within a series of novel folate-containing lipoconjugates on the targeted delivery of nucleic acids // Journal of Drug Delivery Science and Technology. 2020. Vol. 57, № October 2019. P. 1 – 8.
  7. Dong Z., Guo J., Xing X., Zhang X., Du Y., Lu Q. RGD modified and PEGylated lipid nanoparticles loaded with puerarin: Formulation, characterization and protective effects on acute myocardial ischemia model // Biomedicine & Pharmacotherapy. 2017. Vol. 89. P. 297 – 304.
  8. Northrop B.H., Frayne S.H., Choudhary U. Thiol-maleimide “click” chemistry: Evaluating the influence of solvent, initiator, and thiol on the reaction mechanism, kinetics, and selectivity // Polymer Chemistry. 2015. Vol. 6. №18. P. 3415 – 3430.
  9. Shmendel E.V., Maslov M.А., Morozova N.G., Serebrennikova G. A. Synthesis of neoglycolipids for the development of non-viral gene delivery systems // Russian Chemical Bulletin. 2010. Vol. 59, №12. P. 2281 – 2289.
  10. Sakurai Y., Hada T., Kato A., Hagino Y., Mizumura W., Harashima H. Effective Therapy Using a Liposomal siRNA that Targets the Tumor Vasculature in a Model Murine Breast Cancer with Lung Metastasis // Molecular Therapy Oncolytics. 2018. Vol. 11. P. 102 – 108.
  11. Chan A.O., Ho C.M., Chong H.C., Leung Y.C., Huang J.S., Wong M.K., Che C.M. Modification of N-terminal α-amino groups of peptides and proteins using ketenes // Journal of the American Chemical Society. 2012. Vol. 134. №5. P. 2589 – 2598.
  12. Xie X., Lin W., Li M., Yang Y., Deng J., Liu H., Chen Y., Fu X., Liu H., Yang Y. Efficient siRNA Delivery Using Novel Cell-Penetrating Peptide-siRNA Conjugate-Loaded Nanobubbles and Ultrasound // Ultrasound in Medicine and Biology. 2016. Vol. 42. №6. P. 1362 – 1374.
  13. Kasai H., Inoue K., Imamura K., Yuvienco C., Montclare J.K., Yamano S. Efficient siRNA delivery and gene silencing using a lipopolypeptide hybrid vector mediated by a caveolae-mediated and temperature-dependent endocytic pathway // Journal of Nanobiotechnology. 2019. Vol. 17. № 1. P. 1 – 14.
  14. Stucchi S., Colombo D., Guizzardi R., D'Aloia A., Collini M., Bouzin M., Costa B., Ceriani M., Natalello A., Pallavicini P., Cipolla L. Squarate Cross-Linked Gelatin Hydrogels as Three-Dimensional Scaffolds for Biomedical Applications // Langmuir. 2021. Vol. 37. № 48. P. 14050 – 14058.
  15. Sejwal P., Han Y., Shah A., Luk Y-Y. Water-driven chemoselective reaction of squarate derivatives with amino acids and peptides // Organic Letters. 2007. Vol. 9. №23. P. 4897 – 4900.
  16. Ewert K.K., Kotamraju V.R., Majzoub R.N., Steffes V.M., Wonder E.A., Teesalu T., Ruoslahti E., Safinya C.R. Synthesis of linear and cyclic peptide–PEG–lipids for stabilization and targeting of cationic liposome–DNA complexes // Bioorganic and Medicinal Chemistry Letters. 2016. Vol. 26. №6. P. 1618 – 1623.
  17. Ravasco J.M., Faustino H., Trindade A., Gois P.M. Bioconjugation with Maleimides: A Useful Tool for Chemical Biology // Chemistry – A European Journal. 2019. Vol. 25. №1. P. 43 – 59.
  18. Stenzel M.H. Bioconjugation using thiols: Old chemistry rediscovered to connect polymers with nature’s building blocks // ACS Macro Letters. 2013. Vol. 2. № 1. P. 14 – 18.
  19. Saha S., Chatterjee A., Banerjee M. Reagentless Chemistry “On-Water”: An Atom-Efficient and “Green” Route to Cyclic and Acyclic β-Amino Sulfones via aza-Michael Addition Using Microwave Irradiation // Journal of Organic Chemistry. 2023. Vol. 88. № 21. P. 15358– 15366.
  20. Morales-Sanfrutos J., Lopez-Jaramillo J., Ortega-Muñoz M., Megia-Fernandez A., Perez-Balderas F., Hernandez-Mateo F., Santoyo-Gonzalez F. Vinyl sulfone: A versatile function for simple bioconjugation and immobilization // Organic and Biomolecular Chemistry. 2010. Vol. 8, №3. P. 667 – 675.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).