A set of possible approximative methods for efficiently recalculating the contribution of coulomb integrals to the elements of the single-electron hamiltonian at SCF iterations to dramatically speed up extremely resource-intensive DFT calculations of giant biomolecules
- Authors: Anikin N.A1
-
Affiliations:
- Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences
- Issue: Vol 8, No 3 (2025)
- Pages: 26-46
- Section: Articles
- URL: https://journals.rcsi.science/2619-0575/article/view/379442
- DOI: https://doi.org/10.58224/2619-0575-2025-8-3-3
- ID: 379442
Cite item
Full Text
Abstract
the investigation aims to identify potential approximative methodologies for expediting repeated calculations of Coulomb integral contributions to single-electron Hamiltonian elements during self-consistent field (SCF) iterations, thereby dramatically accelerating computationally intensive density functional theory (DFT) analyses of massive biomolecular structures. The research addressed several challenges: a) evaluating semi-empirical approaches for quantum chemical examination of enormous molecular systems; b) exploring how numerous distant molecular fragments could facilitate faster computation of Coulomb interaction contributions; c) examining contemporary approaches to fixed-geometry single-point molecular calculations; d) developing innovative methodologies for accelerated Coulomb integral contribution computation in DFT analyses of substantial biomolecular entities. We present a novel suite of approximation techniques designed to substantially expedite calculations of Coulomb integral contributions to one-electron Hamiltonian elements in conventional DFT methodologies during SCF iterations-typically the rate-limiting phase of these essential yet computationally demanding calculations for extensive biomolecular systems, including thousands of docking complexes comprising thousands of atoms. Our integrated approach features rapid and precise approximation of contribution modifications across innumerable 4-center Coulomb integrals between successive SCF iterations through auxiliary density function-mediated transformation into linear combinations of 3-center integrals, subsequently converted to combinations of 2-center integrals. Contribution variations from non-multipole short-range components of these 2-center integrals are swiftly determined by modifying pre-computed spline contributions based on inter-atomic separations. The remaining multipole-based long-range contributions undergo rapid computation for expansive molecular systems using a fast multipole method (FMM) framework, which strategically partitions extensive spatial domains into hierarchical regions (a technique originally pioneered for galactic dynamics simulations). Each SCF iteration employs sophisticated screening to identify exclusively non-negligible integral combinations, particularly accounting for the progressively diminishing density matrix increments characteristic of converging SCF processes. The framework accommodates the unique characteristics of specific massive molecular systems or extensive collections thereof, such as thousands of docking arrangements between substantial protein structures and diverse small organic ligand molecules. All bimolecular components-including approximations of two-center basis function overlaps via linear combinations of single-center auxiliary density functions-undergo efficient computation utilizing specialized database-stored inter-nuclear distance splines. For novel basis sets, the reference database can be promptly augmented through decomposition into universal exponential components with corresponding database enrichment.
About the authors
N. A Anikin
Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences
Email: nikan53@ioc.ac.ru
References
- Jørgensen P., Kjaergaard T., Kristensen K., Baudin P., Ettenhuber P., Eriksen J.J., Wang Y.M., Bykov D. «Quantum chemistry on the supercomputers of tomorrow», Smoky Mountains Computational Sciences and Engineering Conference (August 31 – September 2, 2015, Gatlinburg, Tennessee, USA).
- Zaleśny R., Papadopoulos M.G., Mezey P.G., Leszczynski J. (Eds.). (2011). Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications (Vol. 13). Springer Science & Business Media.
- Ochsenfeld C., Kussmann J., Lambrecht D.S. Linear-scaling methods in quantum chemistry // Reviews in computational chemistry. 2007. № 23. P. 1.
- Kussmann J., Beer M., Ochsenfeld C. Linear‐scaling self‐consistent field methods for large molecules // Wiley Interdisciplinary Reviews: Computational Molecular Science. 2013. № 3 (6). P. 614 – 636.
- Vitale Valerio Computational methods for first-principles molecular dynamics with linear-scaling density functional theory. Diss. University of Southampton, 2017.
- Niklasson, Anders MN. «Density matrix methods in linear scaling electronic structure theory». Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications. Dordrecht: Springer Netherlands, 2011. P. 439 – 473.
- Hu, Wei, Mohan Chen Advances in density functional theory and beyond for computational chemistry // Frontiers in Chemistry. 2021. № 9. P. 705762.
- Nakai H., Kobayashi M., Yoshikawa T., Seino J., Ikabata Y., Nishimura Y. Divide-and-conquer linear-scaling quantum chemical computations // The Journal of Physical Chemistry A. 2023. № 127 (3). P. 589 – 618.
- Nakata A., Baker J.S., Mujahed S.Y., Poulton J.T., Arapan S., Lin J., Bowler D.R. Large scale and linear scaling DFT with the CONQUEST code // The Journal of chemical physics. 2020. № 152 (16).
- H. A. Le T. Shiozaki Occupied-orbital fast multipole method for efficient exact exchange evaluation // Journal of Chemical Theory and Computation. 2018. № 14:3. P. 1228 – 1234. https://doi.org/10.1021/acs.jctc.7b00880.
- Li A., Muddana H.S., Gilson M.K. Quantum mechanical calculation of noncovalent interactions: A large-scale evaluation of PMx, DFT, and SAPT approaches // Journal of Chemical Theory and Computation. 2014. № 10:4. P. 1563 – 1575. https://doi.org/10.1021/ct401111c
- Hennemann M., Clark T. EMPIRE: a highly parallel semiempirical molecular orbital program: 1: self-consistent field calculations // Journal of Molecular Modeling. 2014. № 20:7. P. 2331. https://doi.org/10.1007/s00894-014-2331-4
- Oferkin I.V., Katkova E.V., Sulimov A.V. Evaluation of docking target functions by the comprehensive investigation of protein-ligand energy minima // Advances in Bioinformatics. 2015. (2015). P. 126858. https://doi.org/10.1155/2015/126858
- Anikin N.A., Anisimov V.M., Bugaenko V.L., Bobrikov V.V., Andreyev A.M. LocalSCF method for semiempirical quantum-chemical calculation of ultralarge biomolecules // Journal of Chemical Physics. 2004. Vol. 121. № 3. P. 1266 – 1270. https://doi.org/10.1063/1.1764496
- Аникин Н.А., Андреев А.М., Кузьминский М.Б., Мендкович А.С. Быстродействующий метод для массовых полуэмпирических расчетов докинг-комплексов // Известия Академии наук. Серия химическая, 2008. № 9. С. 1759 – 1764.
- Аникин Н.А., Бугаенко В.Л., Кузьминский М.Б., Мендкович А.С. Быстродействующий метод для квантово-химических расчетов больших молекул с аппроксимацией гамильтониана DFT // Известия Академии наук. Серия химическая. 2014. № 2. С. 346 – 349.
- Womack J.C., Mardirossian N., Head-Gordon M., Skylaris Ch.-K. Selfconsistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package // Journal of Chemical Physics. 2016. № 145:20. P. 204114. https://doi.org/10.1063/1.4967960
- Higgins J.E., Probert M.I.J., Hasnip P.J., Refson K., Bush I.J. Hybrid OpenMP and MPI within the CASTEP code, 2015. http://www.archer.ac.uk/community/eCSE/eCSE01-017/eCSE01-017.php
- Zhang J., Weisman A.L., Saitta P., Friesner R.A. Efficient simulation of large materials clusters using the jaguar quantum chemistry program: Parallelization and wavefunction initialization // International Journal of Quantum Chemistry. 2016. № 116:5. P. 357 – 368. https://doi.org/10.1002/qua.25043
- Horvath I., Jeszenoi N., Balint M., Paragi G., Hetenyi C. A fragmenting protocol with explicit hydration for calculation of binding enthalpies of target-ligand complexes at a quantum mechanical level // International Journal of Molecular Sciences. 2019. № 20:18. P. 4384. https://doi.org/10.3390/ijms20184384
- Brunk E., Rothlisberger U. Mixed Quantum MeMchanical/Molecular Mechanical Molecular Dynamics Simulations of Biological Systems in Ground and Electronically Excited States // Chemical Reviews. 2015. № 115 (12). P. 6217 – 6163. https://pubmed.ncbi.nlm.nih.gov/25880693/ doi: 10.1021/cr500628b. PMID: 2588069,
- Nemukhin A.V., Polyakov I.V., Moskovsky A.I. Multi-scale supercomputing of large molecular aggregates: A case study of the light-harvesting photosynthetic center // Supercomputing Frontiers and Innovations. 2016. № 2:4. P. 48 – 54. https://doi.org/10.14529/jsfi150403
- Nakajima T., Katouda M., Kamiya M., Nakatsuka Yu. NTChem: A highperformance software package for quantum molecular simulation // I. J. Quant. Chem. 2015. № 115:5. P. 349 – 359.https://www.researchgate.net/publication/270223372_NTChem_A_High-Performance_Software_Package_for_Quantum_Molecular_Simulation
- Shao Y., Gan Z., Epifanovsky E., Gilbert A.T., Wormit M., Kussmann J., Rassolov V.A. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package // Molecular Physics. 2015. № 113 (2). P. 184 – 215.
- Van Voorhis Troy Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. 2021.
- de Freitas Rodrigues S.B., de Araújo, R.S.A., de Mendonça T.R.D., Mendonça-Júnior F.J.B., Zhan P., da Silva-Júnior E.F. Quantum chemistry in drug design: density function theory (DFT) and other quantum mechanics (QM)-related approaches. Applied Computer-Aided Drug Design: Models and Methods. 2023. № 258.
- Sarker N. Evaluation of computational chemistry software and density functional theory methods for electronic structure computation of perovskites (Master's thesis, Itä-Suomen yliopisto). 2025.
- Аникин Н.А. Комплекс возможных аппроксимативных методов эффективного учета вклада кулоновских интегралов для кардинального ускорения расчетов DFT гигантских биомолекул: сведение к быстровычисляемым короткоткодействующим двухцентровым сплайнам плюс FMM дальнего кулона // Chemical Bulletin. 2024. Т. 7. № 3. С. 49 – 63. doi: 10.58224/2619-0575-2024-7-3-49-63
- Eichkorn K., Treutler O., Ohm H., Haser M., Ahlrichs R. Auxiliary basis sets to approximate Coulomb potentials // Chemical Physics Letters. 1995. № 240. P. 283 – 290.
- Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank // Nucleic Acids Research. 2000. № 28:1. P. 235 – 242.
- Баландин М.Ю., Шурина Э.П. Методы решения СЛАУ большой размерности. Новосибирск: Изд-во НГТУ, 2000. 70 с.
- Кротова Е.Л., Цылова Е.Г., Осипов, Н.Р., Филиппов М.А. Обзор и исследование области применимости численных методов для решения СЛАУ // Наука и образование: современные тренды. 2015. (X). С. 39 – 56.
- Вержбицкий В.М. «Численные Методы. Математический Анализ и Обыкновенные Дифференциаотные Уравнения». Москва. ОНИКС 21 век. 2005, гл. 4.
- Лайков Д.Н. Развитие экономного подхода к расчету молекул методом функционала плотности и его применение к решению сложных химических задач: дис. … канд. физ.-мат. наук по спец. 02.00.17 – квантовая химия. М., 2000.
- Аникин Н.А., Андреев А.М., Кузьминский М.Б., Мендкович А.С. Новый подход к ускорению массовых квантово-химических расчетов докинг-комплексов // Известия Академии наук. Серия химическая. 2018. № 6. С. 1100.
- Anikin N.A., Bugaenko V.L., Frash M.V., Gorb L., Leszczynski J. Localized Basis Orbitals: Minimization of 2-Electron Integrals Array and Orthonormality of Basis Set // Journal of Computational Chemistry. 2003. Vol. 24. № 9. P. 1132 – 1141.
Supplementary files

