Adsorption of methylene blue by activated pyrolysis products of sunflower seed husks

Cover Page

Cite item

Full Text

Abstract

in the context of the global environmental crisis caused by the rapid growth of industrial and household waste, the search for effective methods of their recycling is becoming a key task of sustainable development. Traditional disposal methods, such as burial or incineration, not only require significant resources, but also lead to atmospheric pollution with negatively biologically active gases. In this context, pyrolysis of carbon-containing waste represents a promising alternative combining environmental safety and economic feasibility. Unlike combustion, pyrolysis takes place in an environment with a limited oxygen content, which minimizes CO and CO2 emissions, and also allows for the production of valuable secondary products — pyrolysis gases, liquid and solid carbon materials. The latter are suitable for use as adsorbents. Activation of pyrolysis products by chemical reagents (alkalis, acids, or steam) is used to increase the adsorption capacity, which significantly increases their porosity and adsorption capacity. In this work, the adsorption properties of sunflower husk pyrolysis products activated with an aqueous 2 M solution of potassium hydroxide (KL-21(A)), sunflower husk pyrolysis products combined with bentonite clay (KL-21(A)) and pyrolysis products of crushed worn car tires (KR-21(A)) were determined. Their effectiveness in terms of adsorption of methylene blue (MG), a model cationic dye widely used in assessing the absorption capacity of adsorbents, has been studied by spectrophotometric method. Kinetic dependences of adsorption have been established, and the maximum adsorption capacities of experimental materials have been determined depending on MG concentration. The results of experimental studies allow us to conclude that the activation of pyrolysis products of crop and communal waste with potassium hydroxide improves the adsorption characteristics of the developed material. Objectives: to identify the adsorption properties of pyrolysis products of sunflower seed husk KL-21(A) activated with an aqueous 2 M solution of potassium hydroxide, pyrolysis products of sunflower seed husk combined with bentonite clay KL-21(A) and pyrolysis products of worn-out automobile tires KR-21(A). Methods. A Nabi MicroDigital spectrophotometer (South Korea), laboratory instruments and reagents were used to study the adsorption properties by the spectrophotometric method. Results. Graphical dependences of the absorption capacity on the duration and rate of adsorption are revealed, and adsorption isotherms are constructed and analyzed. Conclusions. An adsorption-active material based on pyrolysis products of sunflower seed husks and pyrolysis products of worn-out automobile tires was obtained. The adsorption capacity of CL-21(A) samples was 474 mg/g, CLG-21(A) – 131 mg/g, and KR-21(A) – 351 mg/g. The obtained isotherms are determined by the Langmuir model. It was found that the adsorption equilibrium occurs after 6 hours in KL-21(A) and a day later in KL-21(A) and KR-21(A). It was found that the highest rate of adsorption is characteristic of the KL-21(A) sample and amounted to 0.00094 mmol/min or 0.300 mg/min in the first 15 minutes of exposure.

About the authors

А. Е Razdobarin

Belgorod State National Research University

Email: 1046335@bsuedu.ru

A. I Vezentsev

Belgorod State National Research University

D. A Trufanov

KMA Researcher LLC

References

  1. Muradov I., Toshmamatov B.M., Kurbanova N.M., Baratova S.R., Temirova L. Development of A Scheme For The Thermal Processing of Solid Household // International Journal of Advanced Research in Science, Engineering and Technology. 2019. Vol. 6. P. 10784 – 10787.
  2. Томина Е.В., Ходосова Н.А., Тьен Н.А., Мануковская В.Е., Хай Н.Х. Особенности сорбции метиленового голубого биоуглями на основе карбонизатов сосны и березы // Сорбционные и хроматографические процессы. 2024. № 1. С. 44 – 55.
  3. Assoc. Ph.D., Nistratov A.V., Prof. Dr., Klushin V.N. Preparation and properties of carbon adsorbents based on plant raw materials and polymeric wast // International scientific journal "machines. technologies. materials. 2019. P. 166 – 170.
  4. Oasmaa A., Lehto J., Solantausta Y., Kallio S. Historical review on VTT fast pyrolysis Bio-oil production and upgrading // Journal of Siberian Federal University. Chemistry 2021 P. 489 – 501.
  5. Xie Q., Peng P., Liu S., Min M., Cheng Y., Wan Y., Li Y., Lin X., Liu Y., Chen P., Ruan R. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production // Bioresource Technology 2014. Vol. 172. P. 162 – 168.
  6. Мухин В.М. Активные угли из углеродосодержащих отходов // Физико-химические проблемы адсорбции, структуры и химии поверхности нанопористых материалов: Сборник трудов всероссийского симпозиума с международным участием, посвященный 150-летию российского физикохимика Н.А. Шилова, Москва, 16-20 октября 2023 года. Москва: Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, 2023. С. 29 – 31.
  7. Нгуен Д.Т. Адсорбенты из отходов сахарного производства // Инновационные материалы и технологии – 2020: материалы Международной научно-технической конференции молодых ученых, Минск, 09-10 января 2020 года / Белорусский государственный технологический университет. Минск: Белорусский государственный технологический университет, 2020. С. 461 – 463.
  8. Еремин И.С. Разработка сорбирующего материала на основе сахарного тростника // Экология и промышленность России. 2017. Т. 21. № 10. С. 14 – 17.
  9. Zhang L., Sosa A.C., Walters K.B. Impacts of thermal processing on the physical and chemical properties of pyrolysis oil produced by a modified fluid catalytic cracking pyrolysis process // Energy and Fuels 2016. Vol. 30.P. 7367 – 7378.
  10. Mortensena P.M., Grunwaldt J.D., Jensena P.A., Knudsenc K.G., Jensen A.D. A review of catalytic upgrading of bio-oil to engine fuels // Applied Catalysis A: General 2011. Vol. 407. P. 1 – 19.
  11. Еремина А.О., Головина В.В., Чесноков Н.В., Кузнецов Б.Н. Углеродные адсорбенты из гидролизного лигнина для очистки сточных вод от органических примесей // Journal of Siberian Federal University. С. 100 – 107.
  12. Макаревич Е.А., Папина А.В., Черкасовой Е.В., Игнатовой А.Ю. Применение твёрдого углеродного остатка пиролиза автошин в качестве адсорбента для очистки вод от органических веществ // Вестник Кузбасского государственного технического университета. 2019. № 2 (132). С. 96 – 100.
  13. Томина Е.В., Ходосова Н.А., Тьен Н.А., Мануковская В.Е., Хай Н.Х. Особенности сорбции метиленового голубого биоуглями на основе карбонизатов сосны и березы // Сорбционные и хроматографические процессы. 2024. Т. 24. № 1. С. 44 – 55.
  14. Кошелева А.В., Стоянова А.Д., Мухин В.М. Извлечение неорганических загрязнителей из водных растворов на модифицированном угле МеКС // Успехи в химии и химической технологии. 2023. Т. 37. № 14. С. 26 – 28.
  15. Дробышев В.М., Ляшенко С.Е., Соболева И.В. Изучение зависимости свойств углеродных волокнистых адсорбентов от условий их получения // Успехи в химии и химической технологии. 2013. Т. 27. № 1. C. 102 – 109.
  16. Vezentsev A.I., Sevastyanov V.S., Yapryntsev M.N., Razdobarin A.E. Study of the material composition of carbon black obtained as a result of MSW thermolysis // Innovations in life sciences. Digital Technologies in Construction Engineering. Selected Papers. Сер. "Lecture Notes in Civil Engineering". 2022.С. 375 – 376.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).