Aluminum oxide for liquid filters

Cover Page

Cite item

Full Text

Abstract

liquid filtration is an important process in many high-tech and critical manufacturing sectors. Traditional filter materials have a number of limitations. Anodic aluminum oxide stands out due to its unique highly ordered nanoporous structure, high thermal and chemical resistance, and the possibility of surface functionalization. The main areas of successful use of nanoporous aluminum oxide filters are pharmaceuticals and biotechnology, microelectronics, food industry, as well as other specialized environmental and industrial tasks. A comprehensive evaluation of 100 nm alumina liquid filters and comparison with alternative filtration technologies has shown their undeniable advantages in high temperature and aggressive chemical environments. However, significant challenges remain, primarily related to cost, contamination, potential fragility, and the need to further improve the long-term stability of some alumina phases or under extremely harsh operating conditions.

About the authors

A. G Pokhotko

Kuban State Medical University of the Ministry of Health of the Russian Federation

S. A Babichev

Kuban State Medical University of the Ministry of Health of the Russian Federation

K. I Melkonyan

Kuban State Medical University of the Ministry of Health of the Russian Federation

I. S Zakharchenko

Kuban State Medical University of the Ministry of Health of the Russian Federation

Email: ingaz@rambler.ru

I. A Tarasov

LLC "ART TECH CERAMICS"

References

  1. Дейнега Г.И., Кузьмина И.Г., Битюцкая О.Н., Нарский А.Р. Пенокерамические фильтры на основе отечественных огнеупорных материалов. Часть 1 // Труды ВИАМ. 2023. № 11. С. 2. URL: http://www.viam-works.ru. doi: 10.18577/2307-6046-2023-0-11-17-25
  2. Каталевский А.Д., Смирнов К.В., Смирнова Н.Н. Мембраны в биотехнологии: современное состояние и перспективы // Изв. вузов. Химия и хим. технология. 2025. Т. 68. Вып. 1. С. 6 – 22. doi: 10.6060/ivkkt.20256801.7075
  3. Лебедева О.А., Седелкин В.М., Потехина Л.Н. Технология получения и характеристики хитозановых нано-фильтрационных мембран // Изв. вузов. Химия и хим. технология. 2022. T. 65. Вып. 1. C. 58 – 65. doi: 10.6060/ivkkt.20226501.6340
  4. Пятков Е.С. Мезопористые керамические мембраны для фракционирования низкомолекулярных углеводородов: дис. … канд. техн. наук. Москва, 2017. 111 с. (https://www.imet.ac.ru/upload/dissertations/ДиссертацияПятковfin2017-10-12-14.pdf)
  5. Тилеуберди Т., Цзи С., Пань М., Люй А., Хуан Ц., Воронова Г.А. Получение наноструктурных пористых материалов электрохимическим анодированием алюминия // Вестник Томского государственного университета. Химия. 2020. № 20. С. 30 – 37.
  6. Фадеева Н.П., Павлов В.М., Харченко И.А., Симунин М.М., Шабанова К.А., Павлов В.Ф., Рыжков И.И. Высокопрочные керамические подложки на основе перлита и пеносиликатов для фильтрационных мембран // Мембраны и мембранные технологии. 2022. T. 12. № 3. С. 192 – 199.
  7. Things You Need to Know About Depth Filters [Электронный ресурс] // PoreFiltration. URL: https://www.porefiltration.co.uk/resources/articles/5-things-you-need-to-know-about-depth-filters (дата обращения: 02.01.2025)
  8. Abuwatfa W.H., AlSawaftah N., Darwish N., Pitt W.G., Husseini G.A. A Review on Membrane Fouling Prediction Using Artificial Neural Networks (ANNs) [Электронный ресурс] // Membranes (Basel). 2023. Vol. 13 (7). P. 685. doi: 10.3390/membranes13070685. PMID: 37505052; PMCID: PMC10383311. URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC10383311/ (дата обращения: 02.01.2025)
  9. AdigaS.P., Jin C., Curtiss L.A., Monteiro-Riviere N.A., Narayan R.J. Nanoporous membranes for medical and biological applications [Электронный ресурс] // Int J Nanomedicine/ 2013. Vol. 8. P. 2421 – 2433. URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC3684197/ (дата обращения: 02.01.2025)
  10. Aluminium oxide [Электронный ресурс] // Wikipedia. URL: https://en.wikipedia.org/wiki/Aluminium_oxide (дата обращения: 02.01.2025) and Isabell Thomann
  11. Anodic Aluminum Oxide Anisotropic membrane filters, 2-4nm pore, 13mm dia, pk20 [Электронный ресурс] // SPI Supplies. URL: https://www.2spi.com/item/aaoa213-ca/ (дата обращения: 02.01.2025)
  12. Anodic Aluminum Oxide Isotropic membrane filters, 100nm pore, 13mm dia, pk20 [Электронный ресурс] // SPI Supplies. URL: https://www.2spi.com/item/aaoi10013-ca/ (дата обращения: 02.01.2025)
  13. AU649293B2 – Liposome extrusion process [Электронный ресурс] // Google Patents. URL: https://patents.google.com/patent/AU649293B2/en (дата обращения: 02.01.2025).
  14. Bauer R.A., Qiu M., Schillo-Armstrong M.C. Snider M.T., Yang Z., Zhou Y., Verweij H. Ultra-Stable Inorganic Mesoporous Membranes for Water Purification [Электронный ресурс] // Membranes. 2024. Vol. 14. № 2. P. 34. https://www.mdpi.com/2077-0375/14/2/34 (дата обращения: 02.01.2025)
  15. Bezelya A., Küçüktürkmen B., Bozkır A. Microfluidic Devices for Precision Nanoparticle Production [Электронный ресурс] // Micro. 2023. Vol. 3. № 4. P. 696 – 715. URL: https://www.mdpi.com/2673-8023/3/4/58 (дата обращения: 02.01.2025)
  16. Bolto B., Zhang J., Wu X., Xie Z. A Review on Current Development of Membranes for Oil Removal from Wastewaters // Membranes. 2020.-10(4).-P.65. https://doi.org/10.3390/membranes10040065 [Электронный ресурс] https://www.mdpi.com/2077-0375/10/4/65 (дата обращения: 02.01.2025)
  17. Ceramic Membrane Filtration [Электронный ресурс] // Water & Wastewater. URL: https://www.waterandwastewater.com/ceramic-membrane-filtration/ (дата обращения: 02.01.2025)
  18. Ceramic Membrane Filtration System [Электронный ресурс] // Water & Wastewater. URL: https://www.waterandwastewater.com/ceramic-membrane-filtration-system/ (дата обращения: 02.01.2025)
  19. Ceramic Membrane Technology [Электронный ресурс] // LiqTech. URL: https://liqtech.com/filters/our-core-technology/ (дата обращения: 02.01.2025)
  20. Chemical Mechanical Polishing [Электронный ресурс] // Malvern Panalytical. URL: https://www.malvernpanalytical.com/en/industries/electronics/cmp-slurry (дата обращения: 02.01.2025)
  21. Chen Z., Zhang J., Singh S., Peltier-Pain P., Thorson J.S., Hinds B.J. Functionalized anodic aluminum oxide membrane-electrode system for enzyme immobilization [Электронный ресурс] // ACS Nano. 2014. Vol. 26. P. 8104 – 8112. doi: 10.1021/nn502181k. PMID: 25025628; PMCID: PMC4148145. URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC4148145/ (дата обращения: 02.01.2025)
  22. Chen Y.-F., Hu Y.-H., Chou Y.-I., Lai S.-M., Wang C.-C. Surface modification of nano-porous anodic alumina membranes and its use in electroosmotic flow [Электронный ресурс] // Sensor Actuators B: Chem. 2010. Vol. 145. P. 575 – 582, https://doi.org/10.1016/j.snb.2009.12.061
  23. Chu C.W., Tsai C.H. Surface Modification of Nanopores in an Anodic Aluminum Oxide Membrane through Dopamine-Assisted Codeposition with a Zwitterionic Polymer [Электронный ресурс] // Langmuir. 2024. Vol. 12. P. 5245 – 5254. doi: 10.1021/acs.langmuir.3c03654. Epub 2024 Feb 26. PMID: 38408434; PMCID: PMC10938887. URL: https://pubmed.ncbi.nlm.nih.gov/38408434/ (дата обращения: 02.01.2025)
  24. CMP Filtration Application [Электронный ресурс] // Membrane Solutions. URL: https://www.membrane-solutions.com/application_cmp_filtration.htm (дата обращения: 02.01.2025)
  25. Dashtban Kenari S.L., Mortazavi S., Mosadeghsedghi S. Atallah C., Volchek K. Advancing Ceramic Membrane Technology for Sustainable Treatment of Mining Discharge: Challenges and Future Directions [Электронный ресурс] // Membranes. 2025. Vol. 15. № 4. P. 112. https://doi.org/10.3390/membranes15040112 URL: https://www.mdpi.com/2077-0375/15/4/112 (дата обращения: 02.01.2025)
  26. Difference Between PES and PVDF Filter Membrane [Электронный ресурс] // Hawach. URL: https://www.hawachmembrane.com/difference-between-pes-and-pvdf-filter-membrane/ (дата обращения: 02.01.2025)
  27. Exploring Consumer Shifts in Semiconductor Liquid Filters Market 2025-2033 [Электронный ресурс] // Data Insights Market. URL: https://www.datainsightsmarket.com/reports/semiconductor-liquid-filters-1660691 (дата обращения: 02.01.2025)
  28. Filtration characteristics of CMP slurries [Электронный ресурс] // Entegris. URL: https://www.entegris.com/content/dam/web/resources/application-notes/appnote-filtration-characteristics-of-cmp-slurries-7590.pdf (дата обращения: 02.01.2025)
  29. Filtration Total Cost of Ownership – What you need to know. [Электронный ресурс] // Midwest Air Filter. URL: https://www.midwestairfilter.com/blogs/articles/filtration-total-cost-of-ownership-what-you-need-to-know (дата обращения: 02.01.2025)
  30. Food Processes with Ceramic Membranes [Электронный ресурс] // Messinger Engineering. URL: https://www.messinger.engineering/keramik_lebensmittel.php (дата обращения: 02.01.2025)
  31. Foorginezhad S., Zerafat M.M., Ismail A.F., Gohc P.S. Emerging membrane technologies for sustainable water treatment [Электронный ресурс] // Environ. Sci.: Adv. 2025. № 4. P. 530 – 570 URL: https://pubs.rsc.org/en/content/articlehtml/2025/va/d4va00378k (дата обращения: 02.01.2025)
  32. Gulyakin I.D., Nikolaeva L.L., Sanarova E.V., Lantsova A.V., Oborotova N.A. Use of Membrane Filters in Production Technology for Sterile Drugs [Электронный ресурс] // Pharmaceutical Chemistry Journal. 2016. Т. 50. № 1. C. 33 – 37. doi: 10.1007/s11094-016-1394-1
  33. Gutiérrez-Docio A., Ruiz-Rodriguez A., Prodanov M. Clarification of olive juice by α-alumina microfiltration membranes with enhanced packing density [Электронный ресурс] // Innovative Food Science & Emerging Technologies. 2025. Vol. 102. P. 104031. https://doi.org/10.1016/j.ifset.2025.104031 (дата обращения: 02.01.2025)
  34. Hang F., Xu H., Xie C., Li K., Wen T., Meng L. Pretreatment of Glucose-Fructose Syrup with Ceramic Membrane Ultrafiltration Coupled with Activated Carbon [Электронный ресурс] // Membranes (Basel). 2024. Vol. 23. № 3. P. 57. doi: 10.3390/membranes14030057. PMID: 38535276; PMCID: PMC10972182. https://pmc.ncbi.nlm.nih.gov/articles/PMC10972182/ (дата обращения: 02.01.2025)
  35. High Temperature Filtration Solutions: A Comprehensive Guide for Industrial Applications [Электронный ресурс] // Griffin Filters. URL: https://griffinfilters.com/blogs/news/high-temperature-filtration-solutions-a-comprehensive-guide-for-industrial-applications (дата обращения: 02.01.2025)
  36. High-Quality AAO Filters at the Price of Standard Polymer Filters! [Электронный ресурс] // Anodic Aluminum Oxide Membrane. URL: https://aaomembrane.com/product/ (дата обращения: 02.01.2025)
  37. How to Extend Liquid Chromatography Column Life: Regenerate or Use Guard Columns [Электронный ресурс] // Sigma-Aldrich. URL: https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/analytical-chemistry/small-molecule-hplc/how-to-extend-liquid-chromatography-column-life (дата обращения: 02.01.2025)
  38. How to Extend the Lifetime of HPLC Columns? [Электронный ресурс] // Phenomenex. URL: https://www.phenomenex.com/knowledge-center/hplc-knowledge-center/how-to-extend-the-lifetime-hplc-columns (дата обращения: 02.01.2025)
  39. Itaya K., Sugawara S., Arai K., Sait S. Properties of porous anodic aluminum oxide films as membranes [Электронный ресурс] // J. Chem. Eng. Japan. 1984. Vol. 17. № 5. P. 514 – 520. J-Stage. URL: https://www.jstage.jst.go.jp/article/jcej1968/17/5/17_5_514/_article(дата обращения: 02.01.2025)
  40. Jarvis P., Carra I., Jafari M., Judd S.J. Ceramic vs polymeric membrane implementation for potable water treatment [Электронный ресурс] // Water Res. 2022. Vol. 15.-P.118269. doi: 10.1016/j.watres.2022.118269. Epub 2022 Mar 8. PMID: 35298992. https://pubmed.ncbi.nlm.nih.gov/35298992/ (дата обращения: 02.01.2025)
  41. Jarvis P., Carra I., Jafari M., Judd S.J. Development of a Techno-Economic Model to Compare Ceramic and Polymeric Membranes [Электронный ресурс] // Water Research. 2022. Vol. 215. // ResearchGate. URL: https://www.researchgate.net/publication/254359000_Development_of_a_Techno-Economic_Model_to_Compare_Ceramic_and_Polymeric_Membranes (дата обращения: 02.01.2025)
  42. Kang G.-S., Baek Y., Yoo J.-B. Relationship between surface hydrophobicity and flux for membrane separation [Электронный ресурс] // RSC Adv. 2020. Vol. 10. P. 40043 – 40046. RSC Publishing. URL: https://pubs.rsc.org/en/content/articlehtml/2020/ra/d0ra07262a (дата обращения: 02.01.2025)
  43. Kehrein P., Jafaria M., Slagtb M., Emile Cornelissenc E., Osseweijera P., John Posadaa J., van Loosdrechta M. A techno-economic analysis of membrane-based advanced treatment processes for the reuse of municipal wastewater [Электронный ресурс] // Water Reuse.-2021. Vol. 11. № 4. P. 705 – 725. URL: https://api.kwrwater.nl/uploads/2022/01/Kehrein-A-techno-economic-analysis-of-membrane-based-advanced-treatment-processes-for-the-reuse-of-municipal-Water-Reuse-11(2021)4-705.pdf (дата обращения: 02.01.2025)
  44. Kotobuki M., Gu Q., Zhang L., Wang J. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers [Электронный ресурс] // Molecules. 2021. Vol. 26 (11). P. 3331. doi: 10.3390/molecules26113331. PMID: 34206052; PMCID: PMC8198361 (дата обращения: 02.01.2025)
  45. Ku C.-A., Yu C.-Y., Hung C.-W., Chung C.-K. Advances in the Fabrication of Nanoporous Anodic Aluminum Oxide and Its Applications to Sensors: A Review [Электронный ресурс] // Nanomaterials (Basel). 2023. Vol. 13 (22) URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC10650129/ (дата обращения: 02.01.2025)
  46. Lee L.R., Fan P.H., Chen Y.F., Chang M.H., Liu Y.C., Chang C.C., Chen J.T. Structurally Defined Amphiphilic AAO Membranes Using UV-Assisted Thiol-Yne Chemistry: Applications in Anti-Counterfeiting and Electronics [Электронный ресурс] // ACS Appl Mater Interfaces. 2024. Vol. 16 (36). P. 48073 – 48084. doi: 10.1021/acsami.4c09040. Epub 2024 Aug 27. PMID: 39189834; PMCID: PMC11403548. https://pmc.ncbi.nlm.nih.gov/articles/PMC11403548/ (дата обращения: 02.01.2025)
  47. Lin Y.-C., Lee L.-R., Liu Y.-C., Gautam B., Ho J.-H., Tsai T.-H., Lin J., Zheng Y.-H., Chen J.-T. Advancing Nanopore Technology: Anodic Aluminum Oxide [Электронный ресурс] // ACS Appl. Nano Mater. 2024. Vol. 7. P. 14707 – 14718 [Электронный ресурс]. https://pubs.acs.org/doi/10.1021/acsanm.4c02257 (дата обращения: 02.01.2025).
  48. Liu L., Ayupova T., Umrao S., Akin L.D., Lee H.K., Tibbs J., Wang X., Demirci U., Cunningham B.T. A biosensor-integrated filtration device for nanoparticle isolation and label-free imaging [Электронный ресурс] // Lab Chip. 2025. Vol. 25 (8). P. 2073 – 2084. doi: 10.1039/d5lc00089k. PMID: 40105290; PMCID: PMC11921766. https://pmc.ncbi.nlm.nih.gov/articles/PMC11921766/ (дата обращения: 02.01.2025)
  49. Manzoor S., Ashraf M.W., Tayyaba S., Tariq M.I., Hossain M. K., Recent Progress of Fabrication, Characterization, and Applications of Anodic Aluminum Oxide (AAO) Membrane: A Review [Электронный ресурс] // CMES – Computer Modeling in Engineering and Sciences. 2022. Vol. 135. № 2. P. 1007 – 1052. https://doi.org/10.32604/cmes.2022.022093. (https://www.sciencedirect.com/science/article/pii/S1526149222003113)
  50. McQuaig M.K., Toro A., Van Geertruyden W., Wojciech Z. Misiolek The effect of high temperature heat treatment on the structure and properties of anodic aluminum oxide [Электронный ресурс] // J Mater Sci. 2011. 46. P. 243 – 253 https://doi.org/10.1007/s10853-010-4966-6 (дата обращения: 02.01.2025)
  51. Membrane technology [Электронный ресурс] // VITO. URL: https://vito.be/en/applications/membrane-technology (дата обращения: 02.01.2025)
  52. Mijangos C., Martin J. Polymerization within Nanoporous Anodized Alumina Oxide Templates (AAO): A Critical Survey [Электронный ресурс] // Polymers (Basel). 2023. Vol. 15 (3). P. 525. doi: 10.3390/polym15030525. PMID: 36771824; PMCID: PMC9919978. https://pmc.ncbi.nlm.nih.gov/articles/PMC9919978/ (дата обращения: 02.01.2025)
  53. Moaness M., El-Sayed S.A.M,. Beherei H.H., Mabrouk M. Enhancing the Antifouling Properties of Alumina Nanoporous Membranes by GO/MOF Impregnated Polymer Coatings: In Vitro Studies [Электронный ресурс] // Journal of Functional Biomaterials. 2024. Vol. 15 (3). P. 50. https://doi.org/10.3390/jfb15030050 URL: https://www.mdpi.com/2079-4983/15/3/50 (дата обращения: 02.01.2025)
  54. Nguyen D.T., Lee S., Lopez K.P., Lee J., Straub A.P. Pressure-driven distillation using air-trapping membranes for fast and selective water purification [Электронный ресурс] // Scince. Advance. 2023. Vol. 9. doi: 10.1126/sciadv.adg6638
  55. Niazi F.K., Umer M.A., Ahmed A., Hafeez M.A., Khan Z., Butt M.S., Razzaq A., Luo X., Park Y.-K. Nanoporous Alumina Membranes for Sugar Industry: An Investigation of Sintering Parameters Influence onUltrafiltration Performance [Электронный ресурс] // Sustainability. 2021. Vol. 13. P. 7593. https://doi.org/10.3390/su13147593 (дата обращения: 02.01.2025)
  56. Oh J., Myoung J., Bae J. S., Lim S. Etch behavior of ALD Al2O3on HfSiO and HfSiON stacks in acidic and basic etchants [Электронный ресурс] // Journal of the Electrochemical Society. 2011. Vol. 158 (4). P. 217 – 222. https://doi.org/10.1149/1.3554729
  57. Oro C.E.D., Puton B.M.S., Venquiaruto L.D., Dallago R.M., Arend G.D., Tres M.V. The Role of Membranes in Modern Winemaking: From Clarification to Dealcoholization [Электронный ресурс] // Membranes (Basel). 2025. Vol. 15 (1). P. 14. doi: 10.3390/membranes15010014. PMID: 39852255; PMCID: PMC11766575
  58. Patel Y., Janusas G., Palevicius A., Vilkauskas A. Development of Nanoporous AAO Membrane for Nano Filtration Using the Acoustophoresis Method [Электронный ресурс] // Appl. Sci. 2020. Vol. 10. № 14. P. 4941. URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC7412301/ (дата обращения: 02.01.2025)
  59. Polymeric and Inorganic Membrane Disc Filters [Электронный ресурс] // Sterlitech. URL: https://www.sterlitech.com/membrane-disc-filters.html (дата обращения: 02.01.2025)
  60. Pulido B., Chisca S., Nunes S.P. Solvent and thermal resistant ultrafiltration membranes from alkyne-functionalized high-performance polymers [Электронный ресурс] // Journal of Membrane Science. 2018. Мщд T. 564. P. 361 – 371. https://doi.org/10.1016/j.memsci.2018.07.025 (дата обращения: 17.07.2025)
  61. Qasim F., Ashraf M.W., Tayyaba S., Tariq M.I., Herrera-May A.L., Simulation, Fabrication and Microfiltration Using Dual Anodic Aluminum Oxide Membrane [Электронный ресурс] // Membranes. 2023. Vol. 13. P. 825. https://doi.org/10.3390/membranes13100825 URL: https://www.mdpi.com/2077-0375/13/10/825 (дата обращения: 02.01.2025)
  62. Ranieri G., Mazzei R., Wu Z., Li K., Giorno L. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor [Электронный ресурс] //Molecules. 2016. Mar 14. № 21 (3). P. 345. doi: 10.3390/molecules21030345. PMID: 26985887; PMCID: PMC6274081. URL: https://pubmed.ncbi.nlm.nih.gov/26985887/ (дата обращения: 02.01.2025)
  63. Robatjazi H., MacfarlanL.H., Shah Bahauddin M., FuS. Ultrathin AAO Membrane as a Generic Template for Sub-100 nm Nanostructure Fabrication [Электронный ресурс] // ACS Appl. Mater. Interfaces. 2016. Vol. 28. № 13. P. 4546 – 4553. https://doi.org/10.1021/acs.chemmater.6b00722 (дата обращения: 02.01.2025)
  64. Shao L., Huang X., Teschner D., Zhang W. Gold Supported on Graphene Oxide: An Active and Selective Catalyst for Phenylacetylene Hydrogenations at Low Temperatures [Электронный ресурс] // ACS Catal. 2014. Vol. 4. № 7. P. 2369 – 2373 ResearchGate. URL: https://www.researchgate.net/publication/263938962_Gold_Supported_on_Graphene_Oxide_An_Active_and_Selective_Catalyst_for_Phenylacetylene_Hydrogenations_at_Low_Temperatures (дата обращения: 02.01.2025)
  65. Shim S. Design, construction and evaluation of an experimental ceramic membrane facility with investigation into fouling control [Электронный ресурс] // Figshare. URL: https://figshare.com/articles/thesis/Design_construction_and_evaluation_OFAN_experimental_ceramic_membrane_facility_with_investigation_into_fouling_control/14648892/1 (дата обращения: 02.01.2025) (Примечание: Тезис диссертации).
  66. Smart Drug Delivery System [Электронный ресурс]. URL: https://scispace.com/pdf/smart-drug-delivery-system-1a61u83vmz.pdf (дата обращения: 02.01.2025)
  67. The Differences Between Membrane and Depth Filters in Microfiltration [Электронный ресурс] // PoreFiltration. URL: https://www.porefiltration.co.uk/resources/articles/the-differences-between-membrane-and-depth-filters-in-microfiltration (дата обращения: 02.01.2025)
  68. The Future of Microelectronics Wastewater Treatment: Challenges and Innovations [Электронный ресурс] // Veolia Water Technologies UK Blog. URL: https://blog.veoliawatertechnologies.co.uk/the-future-of-microelectronics-wastewater-treatment-challenges-and-innovations-1 (дата обращения: 02.01.2025)
  69. Tian M., Yang C., Huang Q., Wang R., Su X., Xu P., Peng T. Synthesis and Evaluation of High-Temperature-Resistant and Environmentally Friendly Polymer Filter Loss Additives [Электронный ресурс] // Polymers. 2025. Vol. 17. № 6. P. 792. URL: https://www.mdpi.com/2073-4360/17/6/792 (дата обращения: 02.01.2025)
  70. Understanding Depth Filters [Электронный ресурс] // PoreFiltration. URL: https://www.porefiltration.co.uk/resources/articles/understanding-depth-filters (дата обращения: 02.01.2025)
  71. US5518624A – Ultra pure water filtration [Электронный ресурс] // Google Patents. URL: https://patents.google.com/patent/US5518624A/en (дата обращения: 02.01.2025)
  72. Valappil R.S.K., Ghasem N., Al-Marzouqi M. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review [Электронный ресурс] // Journal of Industrial and Engineering Chemistry. 2021. Vol. 98. P. 103 – 129. https://doi.org/10.1016/j.jiec.2021.03.030 (дата обращения: 02.01.2025)
  73. WeiT., Chen X., Guo Z. Ceramic membrane composites for highly efficient oil–water separation: a review [Электронный ресурс] // J. Mater. Chem. A. 2024. Vol. 12. P. 20803 – 20837. URL: https://pubs.rsc.org/en/content/articlehtml/2024/ta/d4ta04208e (дата обращения: 02.01.2025)
  74. Westermann T., Melin T. Flow-through catalytic membrane reactors – Principles and applications [Электронный ресурс] // Chemical Engineering & Processing: Process Intensification. 2009. Vol. 48. № 1. P. 17 – 28. https://www.researchgate.net/publication/223363267_Flow-through_catalytic_membrane_reactors-Principles_and_applications (дата обращения: 02.01.2025)
  75. Why Use Ceramic Membranes [Электронный ресурс] // LiqTech. URL: https://liqtech.com/filters/silicon-carbide-membranes/why-use-ceramic-membranes/ (дата обращения: 02.01.2025)
  76. Xu B., Gao W., Liao B., Bai H., Qiao Y., Turek W. A Review of Temperature Effects on Membrane Filtration [Электронный ресурс] // Membranes (Basel). 2024. Vol. 14 (1). P. 23. [Электронный ресурс] URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC10819527/ (дата обращения: 02.01.2025)

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).