Bentonite from the Nalchik deposit and the possibilities of its use as a cationic adsorbent

Cover Page

Cite item

Full Text

Abstract

chemical, mineralogical, granulometric and structural-morphological characteristics of bentonite clays of the Nalchik deposit have been established. The elemental composition contains B (trace amounts), Al, Si, K, Ca, Ti, Fe. It has been revealed that the mineralogical composition of the studied clay is complex of montmorillonite, clinoptilolite and low-temperature trigonal quartz. The montmorillonite content is 53.0 ± 1.1 wt.%. The maximum particle size is 198.7-210.1 μm, the proportion of such particles is 0.69 wt.%. The minimum particle size is 0.6-0.9 μm, the proportion of such particles is 1.22 wt.%. According to the results of differential thermal analysis, 4 endoeffects were recorded, the total mass loss on sample calcination was 16.5%, taking into account the loss of free water - 9.5 wt.%. The adsorption characteristics of the analyzed bentonite were studied using “model” pollutants – nickel (II) cations and methylene blue dye. It was found that the adsorption isotherm of nickel (II) ions belongs to class L type 3, and the adsorption isotherm of methylene blue belongs to class L type 2 according to the Gils classification. The results of the study showed that bentonite clay from the Nalchik deposit is capable of purifying wastewater to the maximum permissible concentration of cationic pollutants. Objectives: to investigate the material composition and adsorption properties of bentonite clay from the Nalchik deposit. Methods. To determine the elemental, phase and granulometric composition, the following equipment was used: transmission electron microscope JEM-2100 (Jeol, Japan), diffractometer Ultima IV (Rigaku, Japan), combined analyzer TG/DTG/DTA SDT Q600 (TA Instruments, Inc., USA), particle size analyzer Microtrac S3500 (USA), as well as laboratory instruments and reagents. Results. The mineralogical composition of the clay sample from the Nalchik deposit was established; the mass content of montmorillonite was determined. The granulometric composition was studied. The adsorption processes of the clay sample in relation to the organic dye methylene blue and nickel (II) ions were investigated. Conclusions. The mineralogical composition of the clay sample from the Nalchik deposit was determined: montmorillonite, clinoptilolite and low-temperature trigonal quartz. The montmorillonite content is 53.0 ± 1.1 wt.%. The maximum particle size of the fraction in the studied clay sample is 198.7-210.1 μm, the proportion of such particles is 0.69 wt.%. The minimum particle size of the fraction is 0.6-0.9 μm, the proportion of particles is 1.22 wt.%. The adsorption processes of the clay sample in relation to the organic dye methylene blue and nickel (II) ions were studied. It was shown that the clay of the Nalchik deposit is capable of purifying wastewater from the specified cationic pollutants to the regulatory requirements.

About the authors

A. I Vezentsev

Vyalkin A.A.

Email: vesentsev@bsu.edu.ru
ORCID iD: 0000-0002-0415-4432

B. Sh Efendiev

Federal Scientific Center Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences

ORCID iD: 0000-0002-5730-2160

L. L Nesterova

Yugra State University

G. M Shaнdorova

Vyalkin A.A.

ORCID iD: 0000-0002-9467-027X

A. A Vyalkin

Vyalkin A.A.

References

  1. Sharma P., Pandey A.K., Kim S.H., Singh S.P., Chaturvedi P., Varjani S. Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater // Environmental Technology & Innovation. 2021. Vol. 24. 101826. https://doi.org/10.1016/j.eti.2021.101826
  2. Fu Z., Xi S. The effects of heavy metals on human metabolism // Toxicology mechanisms and methods. 2020. Vol. 30. № 3. P. 167 – 176. https://doi.org/10.1080/15376516.2019.1701594
  3. Showkat A., Bhat S.A., Hassan T., Majid S. Heavy metal toxicity and their harmful effects on living organisms–a review // International Journal of Medical Science And Diagnosis Research. 2019. Vol. 3. № 1. P. 106 – 122. https://doi.org/10.32553/JMSDR
  4. Afolalu S.A., Ikumapayi O.M., Ogedengbe T.S., Kazeem R.A., Ogundipe A.T. Waste pollution, wastewater and effluent treatment methods–An overview // Materials Today: Proceedings. 2022. Vol. 62. P. 3282 – 3288. https://doi.org/10.1016/j.matpr.2022.04.231
  5. Crini G., Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment // Environmental Chemistry Letters. 2019. Vol. 17. P. 145 – 155. https://doi.org/10.1007/s10311-018-0785-9
  6. Чеченов А.А., Куршаева Ф.М. Особенности природопользования в Кабардино-Балкарской республике // Устойчивое развитие горных территорий. 2009. № 1. С. 7 – 13.
  7. Dhar A.K., Himu H.A., Bhattacharjee M., Mostufa M.G., Parvin F. Insights on applications of bentonite clays for the removal of dyes and heavy metals from wastewater: a review // Environmental Science and Pollution Research. 2023. Vol. 30 (3). Р. 5440 – 5474. https://doi.org/10.1007/s11356-022-24277-x
  8. Сабитов А.А., Лыгина Т.З., Аксаментов Е.В., Мирошников К.Е., Руселик Е.С., Трофимова Ф.А., Зайнуллин И.И., Тетерин А.Н. Бентониты Северного Кавказа и перспективы их освоения // Отечественная геология. 2009. № 4. С. 46 – 53.
  9. Беляев Е.В. Неметаллические полезные ископаемые Северного Кавказа // Минеральные ресурсы России. Экономика и управление. 2020. № 4-5 (173). С. 23 – 37.
  10. Беляев Е.В. Минерагения Северного Кавказа // Разведка и охрана недр. 2023. № 2. С. 29 – 39.
  11. Holtzer M., Bobrowski A., Grabowska B. Montmorillonite: a comparison of methods for its determination in foundry bentonites // Metalurgija. 2011. Vol. 50 (2). Р. 119 – 122.
  12. García-Romero E., María Manchado E., Suárez M., García-Rivas J. Spanish bentonites: a review and new data on their geology, mineralogy, and crystal chemistry // Minerals. 2019. Vol. 9 (11). 696. P. 1 – 31. https://doi.org/10.3390/min9110696
  13. Kabdrakhmanova S.K., Kerimkulova A.Z., Nauryzova S.Z., Aryp K., Shaimardan E., Kukhareva A.D., Kantay N., Beisebekov M.M., Thomas S. Bentonite-Based Composites in Medicine: Synthesis, Characterization, and Applications // Journal of Composites Science. 2025. Vol. 9 (6). 310. P. 1 – 25. https://doi.org/10.3390/jcs9060310
  14. Gafoor A., Kumar S., Begum S., Rahman Z. Elimination of nickel (II) ions using various natural/modified clay minerals: A review // Materials Today: Proceedings. 2021. Vol. 37. P. 2033 – 2040. https://doi.org/10.1016/j.matpr.2020.07.500
  15. Mohammadtaghi V., Mohd R., Jing Y., Haider M.Z., Amin M., Zahra G., Fatemeh G., Wei W., Abdulmoseen S.G., Youqing Y., Giovanni C., Gang Yu. Nickel ion removal from aqueous solutions through the adsorption process: a review // Reviews in Chemical Engineering. 2021. Vol. 37. No. 6. P. 755 – 778. https://doi.org/10.1515/revce-2019-0047
  16. Jock A.A., Zaini M.A.A., Surajudeen A., Aliyu El-N.U., Omeiza A.U. Surface modification of low-cost bentonite adsorbents – A review // Particulate Science and Technology. 2019. Vol. 37 (5). P. 538 – 549. https://doi.org/10.1080/02726351.2018.1438548
  17. Fendi W.J., Al-Dulaimy Z.A., Jadoo S.A., Hassan D.F. Adsorption of Methylene Blue from Their Aqueous Solution // International Journal of Special Education. 2022. Vol. 37 (3). P. 16399 – 16407. https://doi.org/10.2166/WST.2016.510
  18. Musah M., Azeh Y., Mathew J.T., Umar M.T., Abdulhamid Z., Muhammad A.I. Adsorption kinetics and isotherm models: a review // CaJoST. 2022. Vol. 4 (1). P. 20 – 26. https://doi.org/10.4314/cajost.v4i1.3
  19. Girish C.R. Various isotherm models for multicomponent adsorption: A review // Int. J. Civ. Eng. Technol. 2017. Vol. 8 (10). P. 80 – 86.
  20. Kalam S., Abu-Khamsin S.A., Kamal M.S., Patil S. Surfactant adsorption isotherms: A review // ACS omega. 2021. Vol. 6 (48). P. 32342 – 32348. https://doi.org/10.1007/s40710-023-00631-0

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).