The influence of hydrogen injection together with methane on changes in the physicochemical properties of sandstone


Cite item

Full Text

Abstract

the scientific basis of hydrogen storage in the environment, the causes and mechanisms of its interaction with other natural gases and fluid-containing media are poorly developed. Therefore, it is important to conduct a set of studies aimed at clarifying the main factors of its storage in UGS facilities together with methane. Changes in the physico-chemical properties of a sandstone sample after prolonged exposure to a hydrogen-methane mixture have been studied using infrared spectroscopy (IR), nuclear magnetic resonance (NMR), X-ray fluorescence analysis, and velocity measurement of longitudinal and transverse sound waves. Changes in the composition of the rock are confirmed by differences in the IR, NMR, and transformation spectra of the mineral component of sandstone, which is largely due to the crystallization processes of substances dissolved in adsorbed water. The results of these studies can be used in the planning and operation of underground gas storage facilities in regions where large-scale hydrogen production and storage will be organized.

About the authors

E. A Safarova

Oil and Gas Research Institute of Russian Academy of Sciences

V. I Lesin

Oil and Gas Research Institute of Russian Academy of Sciences

References

  1. Ahmed Al-Yaseri , Ahmed Fatah // Impact of H2-CH4 mixture on pore structure of sandstone and limestone formations relevant to subsurface hydrogen storage // Fuel. 2024. № 358. P. 130192. https://doi.org/10.1016/j.fuel.2023.130192]
  2. Arkajyoti Pathak, Samuel Bowman, Shikha Sharma, Modeling Impacts of Fe Activity and H2 // Aquatic Geochemistry. 2024. № 30. P. 73 – 92. Partial Pressure on Hydrogen Storage in Shallow Subsurface Reservoirs. https://doi.org/10.1007/s10498-024-09430-x
  3. Абукова Л.А., Абрамова О.П. Прогноз гидрогеохимических эффектов в глинистых флюидоупорах при подземном хранении водорода с метаном // Георесурсы. 2021. № 23 (1). С. 118 – 126. https://doi.org/10.18599/grs.2021.1.13
  4. Голиков Н.А., Машинский Э.И., Скорости акустических волн в породах коллекторах различной пористости, проницаемости и степени водонасыщения // Каротажник. 2012. № 3 (213). С. 100 – 110.
  5. Дерягин Б.В., Овчаренко Ф.Д., Чураев Н.В. Вода в дисперсных системах. М.: Химия, 1989. 288 с.
  6. Королев В.А. Связанная вода в горных породах. Соровский образовательный журнал. 1996. № 9. С. 80 – 87.
  7. Лесин В.И. Возникновение волн плотности электрических зарядов при течении жидких коллоидных растворов. М.: «Нефтяное хозяйство», 2005. № 4. С. 37 – 39.
  8. Ролдугин В.И. Физикохимия поверхности. Долгопрудный: «Интеллект», 2011. 568 с.
  9. Сафарова Е.А. Оценка влияния электрохимических явлений, приводящих к потерям закачиваемого водорода на ПХГ. SOCAR Proceedings Special, 2023. Issue № 2. С. 079-081. doi: 10.5510/OGP2023SI200894
  10. Филиппова Д.С. Водород в геологической среде: особенности генерации и аккумуляции // Научные труды НИПИ Нефтегаз ГНКАР. 2023. № S2. P. 006 – 013. doi: 10.5510/OGP2023SI200885

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).