A set of possible approximative methods for effectively accounting for the contribution of Coulomb integrals to dramatically accelerate the calculations of DFT giant biomolecules: reduction to fast-computable short-range two-center splines plus FMM long-range Coulomb


Cite item

Full Text

Abstract

а set of approximative methods is proposed to radically accelerate the calculation of the contribution of Coulomb integrals in the calculations of DFT giant biomolecules - the limiting stage of such relevant but extremely resource-intensive calculations, including calculations of thousands of docking complexes of thousands of atoms. The proposed complex includes, through a quick and accurate approximation of the contribution of a huge number of 4-center Coulomb integrals through a linear combination of 3-center integrals, and then through a combination of 2-center integrals. The non-multi-complete short-range components of these 2-center integrals are very quickly considered pre-prepared splines from the center-to-center distances. The remaining long-range multipole contributions are quickly calculated for giant molecules in the FMM style (splitting a huge space into regions and subdomains, was originally developed for the dynamics of galaxies). Calculations are saved as much as possible everywhere due to pre-selected combinations of integrals. All two-center components (including the approximation of two-center overlaps of basic functions through linear combinations of single-center auxiliary density functions) are quickly calculated due to splines from internuclear distances from a specially prepared database. For new bases, the database is easily and quickly replenished by decomposing the new basis into a set of universal exponents and a database with them.

About the authors

N. A Anikin

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

References

  1. Jørgensen P., Kjaergaard T., Kristensen K., Baudin P., Ettenhuber P., Eriksen J.J., Wang Y.M., Bykov D. Quantum chemistry on the supercomputers of tomorrow / Smoky Mountains Computational Sciences and Engineering Conference (August 31 – September 2, 2015, Gatlinburg, Tennessee, USA).
  2. Li A., Muddana H.S., Gilson M.K. Quantum mechanical calculation of noncovalent interactions: A large-scale evaluation of PMx, DFT, and SAPT approaches // J. Chem. Theory and Computation. 2014. № 10:4. P. 1563 – 1575. https://doi.org/10.1021/ct401111c
  3. Anikin N.A., Anisimov V.M., Bugaenko V.L., Bobrikov V.V., Andreyev A.M. LocalSCF method for semiempirical quantum-chemical calculation of ultralarge biomolecules // J. Chem. Phys. 2004. Vol. 121. № 3. P. 1266 – 1270. https://doi.org/10.1063/1.1764496
  4. Аникин Н.А., Андреев А.М., Кузьминский М.Б., Мендкович А.С. "Быстродействующий метод для массовых полуэмпирических расчетов докинг-комплексов // Изв. АН. Сер.: Хим. 2008. № 9. С. 1759 – 1764.
  5. Hennemann M., Clark T. EMPIRE: a highly parallel semiempirical molecular orbital program: 1: self-consistent field calculations // Journal of Molecular Modeling. 2014. № 20:7. P. 2331. https://doi.org/10.1007/s00894-014-2331-4
  6. Oferkin I.V., Katkova E.V., Sulimov A.V., Kutov D.C., Sobolev S.I., Voevodin V.V., Sulimov V.B. Evaluation of docking target functions by the comprehensive investigation of protein-ligand energy minima // Advances in Bioinformatics. 2015. № 2015. P. 126858. https://doi.org/10.1155/2015/126858
  7. Аникин Н.А., Бугаенко В.Л., Кузьминский М.Б., Мендкович А.С. Быстродействующий метод для квантово-химических расчетов больших молекул с аппроксимацией гамильтониана DFT // Изв. АН. Сер.; Хим. 2014. № 2. С. 346 – 349.
  8. Zhang J., Weisman A.L., Saitta P., Friesner R.A. Efficient simulation of large materials clusters using the jaguar quantum chemistry program: Parallelization and wavefunction initialization // Int. J. Quant. Chem. 2016. № 116:5. P. 357 – 368. https://doi.org/10.1002/qua.25043
  9. Horvath I., Jeszenoi N., Balint M., Paragi G., Hetenyi C. A fragmenting protocol with explicit hydration for calculation of binding enthalpies of target-ligand complexes at a quantum mechanical level // Int. J. Molec. Sci. 2019. № 20:18. P. 4384. https://doi.org/10.3390/ijms20184384
  10. Brunk E., Rothlisberger U. Mixed Quantum MeMchanical/Molecular Mechanical Molecular Dynamics Simulations of Biological Systems in Ground and Electronically Excited States // Chemical Reviews. 2015. № 115 (12). P. 6217 – 6263. https://pubmed.ncbi.nlm.nih.gov/25880693/ doi: 10.1021/cr500628b. PMID: 2588069
  11. Nemukhin A.V., Polyakov I.V., Moskovsky A.I. Multi-scale supercomputing of large molecular aggregates: A case study of the light-harvesting photosynthetic center // Supercomputing Frontiers and Innovations. 2016. № 2:4. P. 48 – 54. https://doi.org/10.14529/jsfi150403
  12. Le H.A., Shiozaki T. Occupied-orbital fast multipole method for efficient exact exchange evaluation // Journal of Chemical Theory and Computation. 2018. № 14:3. P. 1228 – 1234. https://doi.org/10.1021/acs.jctc.7b00880
  13. Eichkorn K., Treutler O., Ohm H., Haser M., Ahlrichs R. Auxiliary basis sets to approximate Coulomb potentials // Chem. Phys. Letters. 1995. № 240. P. 283 – 290.
  14. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank // Nucleic Acids Research. 2000. № 28:1. P. 235 – 242.
  15. Вержбицкий В.М. Численные Методы. Математический Анализ и Обыкновенные Дифференциальные Уравнения. Москва. ОНИКС 21 век. 2005, гл. 4.
  16. Лайков Д.Н. Развитие экономного подхода к расчету молекул методом функционала плотности и его применение к решению сложных химических задач: дис. … канд. физ.-мат. наук по спец. 02.00.17 – квантовая химия. Москва, 2000.
  17. Anikin N.A., Bugaenko V.L., Frash M.V., Gorb L., Leszczynski J. Localized Basis Orbitals: Minimization of 2-Electron Integrals Array and Orthonormality of Basis Set // J. Comput. Chem. Vol. 24. 2003. № 9. P. 1132 – 1141.
  18. References
  19. Jørgensen P., Kjaergaard T., Kristensen K., Baudin P., Ettenhuber P., Eriksen J.J., Wang Y.M., Bykov D. Quantum chemistry on the supercomputers of tomorrow. Smoky Mountains Computational Sciences and Engineering Conference (August 31 – September 2, 2015, Gatlinburg, Tennessee, USA).
  20. Li A., Muddana H.S., Gilson M.K. Quantum mechanical calculation of noncovalent interactions: A large-scale evaluation of PMx, DFT, and SAPT approaches. J. Chem. Theory and Computation. 2014. No. 10:4. P. 1563 – 1575. https://doi.org/10.1021/ct401111c
  21. Anikin N.A., Anisimov V.M., Bugaenko V.L., Bobrikov V.V., Andreyev A.M. LocalSCF method for semiempirical quantum-chemical calculation of ultralarge biomolecules. J. Chem. Phys. 2004. Vol. 121. No. 3. P. 1266 – 1270. https://doi.org/10.1063/1.1764496
  22. Anikin N.A., Andreev A.M., Kuzminsky M.B., Mendkovich A.S. "A high-speed method for mass semiempirical calculations of docking complexes. Izv. AN. Ser.: Khim. 2008. No. 9. P. 1759 – 1764.
  23. Hennemann M., Clark T. EMPIRE: a highly parallel semiempirical molecular orbital program: 1: self-consistent field calculations. Journal of Molecular Modeling. 2014. No. 20:7. P. 2331. https://doi.org/10.1007/s00894-014-2331-4
  24. Oferkin I.V., Katkova E.V. , Sulimov A.V., Kutov D.C., Sobolev S.I., Voevodin V.V., Sulimov V.B. Evaluation of docking target functions by the comprehensive investigation of protein-ligand energy minima. Advances in Bioinformatics. 2015. No. 2015. P. 126858. https://doi.org/10.1155/2015/126858
  25. Anikin N.A., Bugaenko V.L., Kuzminsky M. B., Mendkovich A.S. High-speed method for quantum-chemical calculations of large molecules with DFT Hamiltonian approximation. Izv. AN. Ser.; Khim. 2014. No. 2. P. 346 – 349.
  26. Zhang J., Weisman A.L., Saitta P., Friesner R.A. Efficient simulation of large materials clusters using the jaguar quantum chemistry program: Parallelization and wavefunction initialization. Int. J. Quant. Chem. 2016. No. 116:5. P. 357 – 368. https://doi.org/10.1002/qua.25043
  27. Horvath I., Jeszenoi N., Balint M., Paragi G., Hetenyi C. A fragmenting protocol with explicit hydration for calculation of binding enthalpies of target-ligand complexes at a quantum mechanical level. Int. J. Molec. Sci. 2019. No. 20:18. P. 4384. https://doi.org/10.3390/ijms20184384
  28. Brunk E., Rothlisberger U. Mixed Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of Biological Systems in Ground and Electronically Excited States. Chemical Reviews. 2015. No. 115 (12). P. 6217 – 6263. https://pubmed.ncbi.nlm.nih.gov/25880693/ doi: 10.1021/cr500628b. PMID: 2588069
  29. Nemukhin A.V., Polyakov I.V., Moskovsky A.I. Multi-scale supercomputing of large molecular aggregates: A case study of the light-harvesting photosynthetic center. Supercomputing Frontiers and Innovations. 2016. No. 2:4. P. 48 – 54. https://doi.org/10.14529/jsfi150403
  30. Le H.A., Shiozaki T. Occupied-orbital fast multipole method for efficient exact exchange evaluation. Journal of Chemical Theory and Computation. 2018. No. 14:3. P. 1228 – 1234. https://doi.org/10.1021/acs.jctc.7b00880
  31. Eichkorn K., Treutler O., Ohm H., Haser M., Ahlrichs R. Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Letters. 1995. No. 240. P. 283 – 290.
  32. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Research. 2000. No. 28:1. P. 235 – 242.
  33. Verzhbitsky V.M. Numerical Methods. Mathematical Analysis and Ordinary Differential Equations. Moscow. ONIX 21st Century. 2005, Ch. 4.
  34. Laikov D.N. Development an economical approach to calculating molecules using the density functional method and its application to solving complex chemical problems: dis. ... candidate of physical and mathematical sciences in the specialty 02.00.17 – quantum chemistry. Moscow, 2000.
  35. Anikin N.A., Bugaenko V.L., Frash M.V., Gorb L., Leszczynski J. Localized Basis Orbitals: Minimization of 2-Electron Integrals Array and Orthonormality of Basis Set. J. Comput. Chem. Vol. 24. 2003. No. 9. P. 1132 – 1141.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).