Overview of developments in the field of biomineralization


Cite item

Full Text

Abstract

reactions and biological processes in biobetone represent the integration of biological and technological aspects, which opens up new prospects for research in the field of biomineral-ization of building materials. The object of the study is biobetone, in which various biological and molecular interactions of its constituent components occur. A detailed description of the methodology of the literature research was carried out and the current world research on the use of bioadditives in biobetone was systematized. A review was conducted of research in the field of biomineralization, biocementation and its pathways through which precipitation of calcium carbonate can occur. The hydrolysis of urea and the mechanism of self-healing of biobetone are considered. The problems of self-healing of biobetone have been identified and recommenda-tions for further research have been proposed.

About the authors

T. A Kirsanova

Peter the Great St. Petersburg Polytechnic University, Russian New University

ORCID iD: 0000-0002-3142-6018

V. A Chistyakov

Southern Federal University

ORCID iD: 0000-0002-2596-0855

R. Hamid

University of Zanjan

ORCID iD: 0000-0002-7521-5079

A. V Gorovtsov

Southern Federal University

ORCID iD: 0000-0002-4339-5052

O. Y Aramova

Southern Federal University

ORCID iD: 0000-0002-9174-2338

E. V Alliluyeva

Southern Federal University

ORCID iD: 0000-0003-0088-2990

References

  1. Seifan M., Berenjian A.Microbially Induced Calcium Carbonate Precipitation: A Widespread Phenomenon in the Biological World. Applied Microbiology and Biotechnology, Springer Verlag. 2019. № 103. P. 4693 – 4708. https://doi.org/10.1007/s00253-019-09861-5
  2. Bhutange S.P., M.V.L.T.C. Biocementation: A Green Technique in Civil Engineering. Proc. Sustain. Infrastruct. Dev. Manag. 2019.
  3. Castro-Alonso M.J., Montañez-Hernandez L.E., Sanchez-Muñoz M.A., Macias Franco M.R., Narayanasamy R., Balagurusamy N. Microbially Induced Calcium Carbonate Precipitation (MICP) and Its Potential in Bioconcrete: Microbiological and Molecular Concepts. Frontiers in Materials, Frontiers Media S.A., 2019. № 6. https://doi.org/10.3389/fmats.2019.00126
  4. Castanier S., Le Métayer-Levrel G.,Perthuisot, J.-P. Ca-Carbonates Precipitation and Limestone Genesis - the Microbiogeologist Point of View. Sedimentary Geology, Lab. de Biogeologie et M., Univ. de Nantes, F-44072 Nantes, Cédex 03, 2 Rue de la Houssinière, France. 1999. № 126. P. 9 – 23. https://doi.org/10.1016/S0037-0738(99)00028-7
  5. Nodehi M., Ozbakkaloglu T., Gholampour A. A Systematic Review of Bacteria-Based Self-Healing Concrete: Biomineralization, Mechanical, and Durability Properties. Journal of Building Engineering, Elsevier Ltd. 2022. № 49. https://doi.org/10.1016/j.jobe.2022.104038.
  6. Mohammed A.A., Nahazanan H., Nasir N.A.M., Huseien G.F., Saad A.H. Calcium-Based Binders in Concrete or Soil Stabilization: Challenges, Problems, and Calcined Clay as Partial Replacement to Produce Low-Carbon Cement. Materials, MDPI. 2023. № 16. P. 6052020. https://doi.org/10.3390/ma16052020
  7. Ortega-Morales B.O., C.C.G. Bioconservation of Historic Stone Buildings – an Updated Review. Appl. Sci. 2021. № 1.
  8. Charpe A.U., Bhutange S.P., Latkar M.V, Chakrabarti T. Studies on Biocementation of Mortar and Identification of Causative Bacteria. Arabian Journal for Science and Engineering, Springer Science and Business Media Deutschland GmbH. 2021. № 46. P. 4563 – 4576. https://doi.org/10.1007/s13369-020-05040-1
  9. Bibi S., Oualha M., Ashfaq M.Y., Suleiman, M.T., Zouari N. Isolation, Differentiation and Biodiversity of Ureolytic Bacteria of Qatari Soil and Their Potential in Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization. RSC Advances, Royal Society of Chemistry. 2018. № 8. P. 5854 – 5863. https://doi.org/10.1039/c7ra12758h.
  10. Bhutange S.P., Latkar M.V. Microbially Induced Calcium Carbonate Precipitation in Construction Materials. Journal of Materials in Civil Engineering, American Society of Civil Engineers (ASCE). 2020. № 32. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003141
  11. Kissel D.E., Cabrera M.L., Ferguson R.B. Reactions of Ammonia and Urea Hydrolysis Products with Soil. Soil Science Society of America Journal. 1988. № 52. P. 1793 – 1796. https://doi.org/10.2136/sssaj1988.03615995005200060050x
  12. De Nardi C., Cecchi A., Ferrara L., Benedetti A., Cristofori D. Effect of Age and Level of Damage on the Autogenous Healing of Lime Mortars. Composites Part B: Engineering, Elsevier Ltd. 2017. № 124. P. 144 – 157. https://doi.org/10.1016/j.compositesb.2017.05.041
  13. Setlow P. Spore Germination. Current Opinion in Microbiology, Elsevier Ltd. 2003. № 6. P. 550 – 556. https://doi.org/10.1016/j.mib.2003.10.001
  14. Gupta S., Pang S.D., Kua H.W. Autonomous Healing in Concrete by Bio-Based Healing Agents – A Review. Construction and Building Materials, Elsevier Ltd. 2017. № 146. P. 419 – 428. https://doi.org/10.1016/j.conbuildmat.2017.04.111
  15. Jonkers H.M., Thijssen A., Muyzer G., Copuroglu O., Schlangen E. Application of Bacteria as Self-Healing Agent for the Development of Sustainable Concrete. Ecological Engineering. 2010. № 36. P. 230 – 235. https://doi.org/10.1016/j.ecoleng.2008.12.036
  16. Xiao X., Unluer C., Yang, E.-H. Study on the Viability of Unprotected Bacterial Spores Directly Embedded in a Reactive Magnesia Cement Matrix for Potential Crack Healing. Construction and Building Materials, Elsevier Ltd, 2022. 346 p. https://doi.org/10.1016/j.conbuildmat.2022.128424
  17. Ghaemifard S., Khosravi H., Bamoharram F.F., Ghannadiasl, A. Self-Healing Concrete Using Microcapsules Containing Mineral Salts. International Journal of Engineering Transactions C: Aspects, Materials and Energy Research Center. 2024. № 37. P. 779 – 793. https://doi.org/10.5829/IJE.2024.37.04A.16.
  18. Sun Y., Liu K., Sun D., Jiang N., Xu W., Wang, A. Evaluation of Urea Hydrolysis for MICP Technique Applied in Recycled Aggregate: Concentration of Urea and Bacterial Spores. Construction and Building Materials, Elsevier Ltd. 2024. 419 p. https://doi.org/10.1016/j.conbuildmat.2024.135366.
  19. Sidhu N., Goyal S., Reddy, M.S. Crack Bioremediation in Concrete by Photoautotrophic Cyanobacteria through Fly Ash-Based Cementitious Biogrout. Journal of Materials in Civil Engineering, American Society of Civil Engineers (ASCE). 2024. № 36. https://doi.org/10.1061/JMCEE7.MTENG-16301
  20. Chen H.-J., Chen T.-K., Tang C.-W., Chang, H.-W. The Evaluation of the Effectiveness of Biomineralization Technology in Improving the Strength of Damaged Fiber-Reinforced LWAC. Materials, Multidisciplinary Digital Publishing Institute (MDPI), 2024. № 17. https://doi.org/10.3390/ma17010214
  21. Mengistu D.M., Mamo A.N., Gemeda M.T. Isolation and Characterization of Calcite Precipitating Bacteria from Soda Lakes That Have the Capability to Produce Biocement for Self-Healing Concretes. Construction and Building Materials, Elsevier Ltd. 2023. 408 p. https://doi.org/10.1016/j.conbuildmat.2023.133510.
  22. Zhang R., Wang J. Effect of Regulating Urease Activity on the Properties of Bio-CaCO3 Precipitated on Recycled Aggregates. Construction and Building Materials, Elsevier Ltd. 2023. 403 p. https://doi.org/10.1016/j.conbuildmat.2023.133119
  23. Vaskevicius L., Malunavicius V., Jankunec M., Lastauskiene E., Talaikis M., Mikoliunaite L., Maneikis A., Gudiukaite R. Insights in MICP Dynamics in Urease-Positive Staphylococcus Sp. H6 and Sporosarcina Pasteurii Bacterium. Environmental Research, Academic Press Inc. 2023. № 234. https://doi.org/10.1016/j.envres.2023.116588.
  24. Yazici Ş., Güller C., Ayekin B., Mardani A., Akkaya,A. Usability of Sustainable Materials on Bacteria-Based Self-Healing in Cementitious Systems. Journal of Intelligent Material Systems and Structures, SAGE Publications Ltd. 2023. № 34. P. 1998 – 2019. https://doi.org/10.1177/1045389X231157358
  25. Răut I., Constantin M., Petre I., Raduly M., Radu N., Gurban A.-M., Doni M., Alexandrescu E., Nicolae C.-A., Jecu L. Highlighting Bacteria with Calcifying Abilities Suitable to Improve Mortar Properties. Materials, MDPI. 2022. № 15. 5207259. P. https://doi.org/10.3390/ma15207259
  26. Salmasi F., Mostofinejad D. () Investigating the Effects of Bacterial Activity on Compressive Strength and Durability of Natural Lightweight Aggregate Concrete Reinforced with Steel Fibers. Construction and Building Materials, Elsevier Ltd. 2020. № 251. https://doi.org/10.1016/j.conbuildmat.2020.119032.
  27. Nkuah J.-S., Kaushal M., Singla. S. Self-Healing Development and Performance Assessment of Bio Cementitious Concrete. International Journal of Scientific and Technology Research, International Journal of Scientific and Technology Research. 2020. № 9. P. 1553 – 1567. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079537559&partnerID=40&md5=872f41f4dcc8844549eedd7e8b61690f
  28. Reddy P.N., Kavyateja B.V. Experimental Study on Strength Parameters of Self Repairing Concrete. Annales de Chimie: Science des Materiaux, International Information and Engineering Technology Association. 2019. № 43. P. 305 – 310. https://doi.org/10.18280/acsm.430505
  29. Guan B., Tian Q., Li J., Zheng H., Xue T. Selecting Bacteria for In-Depth Self-Healing of Concrete at Both Room and Low Temperature. Construction and Building Materials, Elsevier Ltd. 2023. № 394. https://doi.org/10.1016/j.conbuildmat.2023.132175.
  30. Lu C., Li Z., Wang J., Zheng Y., Cheng L. An Approach of Repairing Concrete Vertical Cracks Using Microbially Induced Carbonate Precipitation Driven by Ion Diffusion. Journal of Building Engineering, Elsevier Ltd. 2023. № 73. https://doi.org/10.1016/j.jobe.2023.106798
  31. Chen L., Song Y., Fang H., Feng Q., Lai C., Song X. Systematic Optimization of a Novel, Cost-Effective Fermentation Medium of Sporosarcina Pasteurii for Microbially Induced Calcite Precipitation (MICP). Construction and Building Materials, Elsevier Ltd. 2022. № 348. https://doi.org/10.1016/j.conbuildmat.2022.128632
  32. Sridhar S., Bhatt N., Suraishkumar G.K. Mechanistic Insights into Ureolysis Mediated Calcite Precipitation. Biochemical Engineering Journal, Elsevier B.V. 2021. № 176. https://doi.org/10.1016/j.bej.2021.108214
  33. Wu Y., Zhao G., Qi H. Precipitation of Magnetic Iron Oxide Induced by Sporosarcina Pasteurii Cells. Microorganisms, MDPI AG. 2021. № 9. P. 1 – 10. https://doi.org/10.3390/microorganisms9020331
  34. Zhu J., Shen D., Xie J., Tang C., Jin B., Wu S. Mechanism of Urea Decomposition Catalyzed by Sporosarcina Pasteurii Urease Based on Quantum Chemical Calculations. Molecular Simulation, Taylor and Francis Ltd. 2021. № 47. P. 1335– 1348. https://doi.org/10.1080/08927022.2021.1970156
  35. .Kim H., Son H.M., Park S., Seo J., Lee H.K. Effects of Temperature and Salinity on Concrete-Surface Treatment by Bacteria in Marine Environment. ACI Materials Journal, American Concrete Institute. 2020. № 117. P. 57 – 65. https://doi.org/10.14359/51724615
  36. Kahani M., Kalantary F., Soudi M.R., Pakdel L., Aghaalizadeh S. Optimization of Cost Effective Culture Medium for Sporosarcina Pasteurii as Biocementing Agent Using Response Surface Methodology: Up Cycling Dairy Waste and Seawater. Journal of Cleaner Production, Elsevier Ltd. 2020. № 253. https://doi.org/10.1016/j.jclepro.2020.120022
  37. Yilmazer Pola, B., Uysal M., Korkmaz V. A research for bacterial self-healing in metakaolin based geopolymer mortars. Sigma Journal of Engineering and Natural Sciences, Yildiz Technical University. 2020. № 38. P 1401 – 1414. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101167703&partnerID=40&md5=2ca187802966915daf35bbb1b9783c12
  38. Tayebani B., Mostofinejad D. Self-Healing Bacterial Mortar with Improved Chloride Permeability and Electrical Resistance. Construction and Building Materials, Elsevier Ltd. 2019. № 208. P. 75 – 86. https://doi.org/10.1016/j.conbuildmat.2019.02.172
  39. Zhang R., Xie D., Wu K., Wang J. Optimization of Sodium Alginate Aided Bio-Deposition Treatment of Recycled Aggregates and Its Application in Concrete. Cement and Concrete Composites, Elsevier Ltd. 2023. № 139. https://doi.org/10.1016/j.cemconcomp.2023.105031
  40. Dos Santos J.R., E.C., S.M.P., M.J. Biomineralization of Calcium Carbonate in Concrete by the Action of Bacillus Pumilus. Engenharia Sanitaria e Ambiental. 2023. № 28.
  41. Mirshahmohammad M., Rahmani H., Maleki-Kakelar M., Bahari A. Performance of Biological Methods on Self-Healing and Mechanical Properties of Concrete Using S. Pasteurii. Environmental Science and Pollution Research, Springer Science and Business Media Deutschland GmbH. 2023. № 30. P. 2128 – 2144. https://doi.org/10.1007/s11356-022-21811-9
  42. Dung N.T., Hoang T., Yang E.-H., Chu J., Unluer C. New Frontiers in Sustainable Cements: Improving the Performance of Carbonated Reactive MgO Concrete via Microbial Carbonation Process. Construction and Building Materials, Elsevier Ltd. 2022. № 356. https://doi.org/10.1016/j.conbuildmat.2022.129243
  43. Park G., Kim Y., Lee H.H., Lee O.-M., Park J., Kim Y.-J., Lee K.M., Heo M.-S., Son, H.-J. Characterization and Applicability of Novel Alkali–Tolerant Carbonatogenic Bacteria as Environment-Friendly Bioconsolidants for Management of Concrete Structures and Soil Erosion. Journal of Environmental Management, Academic Press. 2020. № 321. https://doi.org/10.1016/j.jenvman.2022.115929.
  44. Harnpicharnchai P., Mayteeworakoon S., Kitikhun S., Chunhametha S., Likhitrattanapisal S., Eurwilaichitr L., Ingsriswang S. High Level of Calcium Carbonate Precipitation Achieved by Mixed Culture Containing Ureolytic and Nonureolytic Bacterial Strains. Letters in Applied Microbiology, John Wiley and Sons Inc. 2022. № 75. P. 888 – 898. https://doi.org/10.1111/lam.13748
  45. Anand K., Goyal S., Reddy M.S. Long-Term Viable SF Immobilized Bacterial Cells as Sustainable Solution for Crack Healing in Concrete. Structures, Elsevier Ltd. 2022. № 43. P. 1342 – 1355. https://doi.org/10.1016/j.istruc.2022.07.056
  46. Fan Y., Du H., Wei H., Zhao T. Experimental Study on Urease Activity and Cementation Characteristics of Soybean. Journal Wuhan University of Technology, Materials Science Edition, Wuhan Ligong Daxue. 2022. № 37. P. 636 – 644. https://doi.org/10.1007/s11595-022-2578-z
  47. Amini A.B., Koucheh M.F., Babakhani S., Kafil H.S., Fahmi A. Improvement of Mortar Samples Using the Bacterial Suspension Cultured in the Industrial Corn Steep Liquor Media. Industrial Biotechnology, Mary Ann Liebert Inc. 2022. № 18. P. 162 – 167. https://doi.org/10.1089/ind.2022.0012.
  48. Taqa A.A., Suleiman G., Senouci A., Mohsen M.O. Using Aerosol OT in Hexane Solution to Synthesize Calcium Nitrate Self‐Healing Refined Microcapsules for Construction Applications. Buildings, MDPI. 2022. № 12. https://doi.org/10.3390/buildings12060751
  49. Cui M.-J., Teng A., Chu J., Cao B. A Quantitative, High-Throughput Urease Activity Assay for Comparison and Rapid Screening of Ureolytic Bacteria. Environmental Research, Academic Press Inc. 2022. № 208. https://doi.org/10.1016/j.envres.2022.112738
  50. Lu C.-H., Bu S.-Z., Shahin M.A., Zheng Y.-L., Cheng L. Mitigation of Alkali-Silica Reaction by Microbially Induced CaCO3 Protective Layer on Aggregates. Construction and Building Materials, Elsevier Ltd. 2022. № 328. https://doi.org/10.1016/j.conbuildmat.2022.127065
  51. Zhao J., Csetenyi L., Gadd G.M. Fungal-Induced CaCO3 and SrCO3 Precipitation: A Potential Strategy for Bioprotection of Concrete. Science of the Total Environment, Elsevier B.V. 2022. № 816. https://doi.org/10.1016/j.scitotenv.2021.151501
  52. Mirshahmohammad M., Rahmani H., Maleki-Kakelar M., Bahari A. Effect of Sustained Service Loads on the Self-Healing and Corrosion of Bacterial Concretes. Construction and Building Materials, Elsevier Ltd. 2022. № 322. https://doi.org/10.1016/j.conbuildmat.2022.126423
  53. Yang Y., Chu J., Liu H., Cheng L.Construction of Water Pond Using Bioslurry-Induced Biocementation. Journal of Materials in Civil Engineering, American Society of Civil Engineers (ASCE). 2022. № 34. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004109
  54. Shi W., Wang M., Wu L., Xie X., Wang M., Lu T. Study of Concrete Crack Repair Using Bacillus Megaterium. Advances in Materials Science and Engineering, Hindawi Limited. 2022. https://doi.org/10.1155/2022/6188680
  55. Park M., Park S., Yoo J.-Y., Kim Y., Lee K.M., Hwang D.-Y., Son, H.-J. Enzyme-Mediated Biocalcification by a Novel Alkaliphilic Bacillus Psychrodurans LC40 and Its Eco-Friendly Application as a Biosealant for Crack Healing. Science of the Total Environment, Elsevier B.V., 2022. № 802. https://doi.org/10.1016/j.scitotenv.2021.149841
  56. Rameshkumar V., Prabhath Ranjan Kumar S., Poornima V., Venkatasubramani R., Sreevidya V. Improvements in Mechanical and Durability Parameters of Bio-Engineered Concrete with Metakaolin as a Partial Substitute for Cement. European Journal of Environmental and Civil Engineering, Taylor and Francis Ltd. 2022. № 26. P. 2753 – 2766. https://doi.org/10.1080/19648189.2020.1767696
  57. Wang R., Jin P., Ding Z., Zhang W. Surface Modification of Recycled Coarse Aggregate Based on Microbial Induced Carbonate Precipitation. Journal of Cleaner Production, Elsevier Ltd. 2021. № 328. https://doi.org/10.1016/j.jclepro.2021.129537
  58. Qin J., Qin Q., Li X., Xue J., Wang R., Zhang Q., Wang P., Guo Z., Gong Y. Urea Supply Control in Microbial Carbonate Precipitation to Effectively Fill Pores of Concrete. Construction and Building Materials, Elsevier Ltd. 2021. № 310. https://doi.org/10.1016/j.conbuildmat.2021.125123
  59. Xu J., Tang Y., Wang, X. Study on the Correlation Between the Optimum Conditions of Microbially-induced CaCO3 Precipitation and the Prerequisites for Self-healing Concrete. Cailiao Daobao/Materials Reports, Cailiao Daobaoshe. Materials Review. 2021. № 35. P. 22039 – 22044. https://doi.org/10.11896/cldb.20090182
  60. Ortega-Villamagua E., Gudiño-Gomezjurado M., Palma-Cando A.Microbiologically Induced Carbonate Precipitation in the Restoration and Conservation of Cultural Heritage Materials. Molecules, MDPI AG. 2020. № 25. https://doi.org/10.3390/molecules25235499.
  61. Lian J., Yan Y., Xu H., Fu D. Quantitative Method of Calcium Carbonate in Bio-Grouting Test under Multiple Treatment Factors. Construction and Building Materials, Elsevier Ltd. 2020. № 259. https://doi.org/10.1016/j.conbuildmat.2020.120384
  62. Wang X., Xie W., Li T., Ren J., Zhu J., Han N., Xing F. Molecular Dynamics Study on Mechanical Properties of Interface between Urea-Formaldehyde Resin and Calcium-Silicate-Hydrates. Materials, MDPI AG. 2020. № 13. https://doi.org/10.3390/ma13184054
  63. Wang L.-G., Ju S.-Y., Chu H.-Y., Liu Z.-Y., Yang Z.-Q., Wang F.-J., Jiang J.-Y. Hydration Process and Microstructure Evolution of Low Exothermic Concrete Produced with Urea. Construction and Building Materials, Elsevier Ltd. 2020. № 248. https://doi.org/10.1016/j.conbuildmat.2020.118640
  64. Zhao S., Liu Z., Wang F. Carbonation Reactivity Enhancement of γ-C2S through Biomineralization. Journal of CO2 Utilization, Elsevier Ltd. 2020. № 39. https://doi.org/10.1016/j.jcou.2020.101183
  65. Xu J., Tang Y., Wang X. A Correlation Study on Optimum Conditions of Microbial Precipitation and Prerequisites for Self-Healing Concrete. Process Biochemistry, Elsevier Ltd. 2020. № 94. P. 266 – 272. https://doi.org/10.1016/j.procbio.2020.04.028
  66. Ezzat S.M., Ewida A.Y.I. Smart Soil Grouting Using Innovative Urease-Producing Bacteria and Low Cost Materials. Journal of Applied Microbiology, John Wiley and Sons Inc. 2021. № 131. P 2294 – 2307. https://doi.org/10.1111/jam.15117
  67. Algaifi H.A., Baka, S.A., Alyousef R., Sam A.R.M., Alqarn, A.S., Wan Ibrahim M.H., Shahidan S., Ibrahim M., Salami B.A. Machine Learning and RSM Models for Prediction of Compressive Strength of Smart Bio-Concrete. Smart Structures and Systems, Techno-Press. 2021. № 28. P. 535 – 551. https://doi.org/10.12989/sss.2021.28.4.535
  68. Qian C.X., Zheng T.W., Rui Y.F. Living Concrete with Self-Healing Function on Cracks Attributed to Inclusion of Microorganisms: Theory, Technology and Engineering Applications—A Review. Science China Technological Sciences, Science Press. 2021. № 64. P. 2067 – 2083. https://doi.org/10.1007/s11431-021-1879-6
  69. Han P.-P., Geng, W.-J., Li M.-N., Jia S.-R., Yin J.-L., Xue R.-Z. Improvement of Biomineralization of Sporosarcina Pasteurii as Biocementing Material for Concrete Repair by Atmospheric and Room Temperature Plasma Mutagenesis and Response Surface Methodology. Journal of Microbiology and Biotechnology, Korean Society for Microbiolog and Biotechnology. 2021. № 31. P. 1311 – 1322. https://doi.org/10.4014/jmb.2104.04019
  70. Liu Z., Chin C.S., Xia J. Improving Recycled Coarse Aggregate (RCA) and Recycled Coarse Aggregate Concrete (RCAC) by Biological Denitrification Phenomenon. Construction and Building Materials, Elsevier Ltd. 2021. № 301. https://doi.org/10.1016/j.conbuildmat.2021.124338
  71. Bhutange S.P., Latka, M.V., Chakrabarti T. Influence of Direct Urease Source Incorporation on Mechanical Properties of Concrete. Construction and Building Materials, Elsevier Ltd. 2021. № 301. https://doi.org/10.1016/j.conbuildmat.2021.124116
  72. Mitra A., Sreedharan S.M., Singh R. Concrete Crack Restoration Using Bacterially Induced Calcium Metabolism. Indian Journal of Microbiology, Springer. 2021. № 61. P. 229 – 233. https://doi.org/10.1007/s12088-020-00916-0.
  73. Choi S., Park S., Park M., Kim Y., Lee K.M., Lee O.-M., Son H.-J. Characterization of a Novel CaCO3-Forming Alkali-Tolerant Rhodococcus Erythreus S26 as a Filling Agent for Repairing Concrete Cracks. Molecules, MDPI AG. 2021. № 26. https://doi.org/10.3390/molecules26102967
  74. Xiao X., Goh L.X., Unluer C., Yan, E.-H. Bacteria-Induced Internal Carbonation of Reactive Magnesia Cement. Construction and Building Materials, Elsevier Ltd. 2021. № 267. https://doi.org/10.1016/j.conbuildmat.2020.121748
  75. Tezer M.M., Bundur Z.B. Development of a 2-phase bio-additive for self-healing cement-based materials. Journal of the Faculty of Engineering and Architecture of Gazi University, Gazi Universitesi. 2021. № 36. P. 1171 – 1184. https://doi.org/10.17341/gazimmfd.695637
  76. Rauf M., Khaliq W., Khushnood R.A., Ahmed I. Comparative Performance of Different Bacteria Immobilized in Natural Fibers for Self-Healing in Concrete. Construction and Building Materials, Elsevier Ltd. 2020. № 258. https://doi.org/10.1016/j.conbuildmat.2020.119578
  77. Amer Algaifi H., Abu Bakar S., Rahman Mohd. Sam A., Ismail M., Razin Zainal Abidin A., Shahir S., Ali Hamood Altowayti W. Insight into the Role of Microbial Calcium Carbonate and the Factors Involved in Self-Healing Concrete. Construction and Building Materials, Elsevier Ltd. 2020. № 254. https://doi.org/10.1016/j.conbuildmat.2020.119258
  78. Ryu Y., Lee K.-E., Cha I.-T., Park W. Optimization of Bacterial Sporulation Using Economic Nutrient for Self-Healing Concrete. Journal of Microbiology, Microbiological Society of Korea. 2020. № 58. P. 288 – 296. https://doi.org/10.1007/s12275-020-9580-y
  79. Jung Y., Kim W., Kim W., Park W. Complete Genome and Calcium Carbonate Precipitation of Alkaliphilic Bacillus Sp. AK13 for Self-Healing Concrete. Journal of Microbiology and Biotechnology, Korean Society for Microbiology and Biotechnology. 2020. № 30. P. 404 – 416. https://doi.org/10.4014/jmb.1908.08044
  80. Kalenov S.V, Gradova N.B., Sivkov S.P., Agalakova E. V, Belov A.A., Suyasov N.A., Khokhlachev N.S., Panfilov V.I. A preparation based on bacteria isolated from hypersaline environments to improve the functional and protective characteristics of concrete. Biotekhnologiya, State Research Institute for Genetics and Selection of Industrial Microorganisms. 2020. № 36. P. 21 – 28. https://doi.org/10.21519/0234-2758-2020-36-4-21-28
  81. Schreiberová H., Bílý P., Fládr J., Šeps K., Chylík R., Trtík T. Impact of the Self-Healing Agent Composition on Material Characteristics of Bio-Based Self-Healing Concrete. Case Studies in Construction Materials, Elsevier Ltd. 2019. № 11. https://doi.org/10.1016/j.cscm.2019.e00250
  82. Sun X., Miao L., Wang C. Glucose Addition Improves the Bio-Remediation Efficiency for Crack Repair. Materials and Structures/Materiaux et Constructions, Springer Netherlands. 2019. № 52. https://doi.org/10.1617/s11527-019-1410-5
  83. Zhu X., Wang J., De Belie N., Boon N. Complementing Urea Hydrolysis and Nitrate Reduction for Improved Microbially Induced Calcium Carbonate Precipitation. Applied Microbiology and Biotechnology, Springer Verlag. 2019. № 103. P. 8825 – 8838. https://doi.org/10.1007/s00253-019-10128-2
  84. Wu M., Hu X., Zhang Q., Xue D., Zhao Y. Growth Environment Optimization for Inducing Bacterial Mineralization and Its Application in Concrete Healing. Construction and Building Materials, Elsevier Ltd. 2019. № 209. P. 631 – 643. https://doi.org/10.1016/j.conbuildmat.2019.03.181
  85. Charpe A.U., Latkar M.V., Chakrabarti T. Biocementation: An Eco-Friendly Approach to Strengthen Concrete. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, ICE Publishing. 2019. № 172. P. 438 – 449. https://doi.org/10.1680/jensu.18.00019
  86. Ivanov V., Stabnikov V., Kawasaki S. Ecofriendly Calcium Phosphate and Calcium Bicarbonate Biogrouts. Journal of Cleaner Production, Elsevier Ltd. 2019. № 218. P. 328 – 334. https://doi.org/10.1016/j.jclepro.2019.01.315
  87. Farrugia C., Borg R.P., Ferrara L., Buhagiar J. The Application of Lysinibacillus Sphaericus for Surface Treatment and Crack Healing in Mortar. Frontiers in Built Environment, Frontiers Media S.A. 219. № 5. https://doi.org/10.3389/fbuil.2019.00062
  88. Sun X., Miao L., Chen R. Adding Aluminum Oxide to Improve the Repairing Effect of Cracks Based on Bio-Remediation. Journal of Advanced Concrete Technology, Japan Concrete Institute. 2019. № 17. P. 177 – 187. https://doi.org/10.3151/jact.17.177
  89. Tayebani B., Mostofinejad D. Penetrability, Corrosion Potential, and Electrical Resistivity of Bacterial Concrete. Journal of Materials in Civil Engineering, American Society of Civil Engineers (ASCE). 2019. № 31. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002618
  90. Huynh N.N.T., Imamoto K.-I., Kiyohara C. A Study on Biomineralization Using Bacillus Subtilis Natto for Repeatability of Self-Healing Concrete and Strength Improvement. Journal of Advanced Concrete Technology, Japan Concrete Institute. 2019. № 17. P. 700 – 714. https://doi.org/10.3151/jact.17.700
  91. Li J., Song J., Zhang S., Liu W., Cui Z., Li W. The Effects of Various Silicate Coatings on the Durability of Concrete: Mechanisms and Implications. Buildings, Multidisciplinary Digital Publishing Institute (MDPI). 2024. № 14. https://doi.org/10.3390/buildings14020381
  92. Zhang H., Li Y., Wang Q., Zhao Y. Long-Lasting Phosphorescent Microcapsules Based on in-Situ Polymerization Method for Damage Sensing. Structural Control and Health Monitoring, John Wiley and Sons Ltd. 2022. № 29. https://doi.org/10.1002/stc.3131
  93. Wang X., Liang J., Ren J., Wang W., Liu J., Xing F. Constitutive Relations, Mechanical Behaviour, and Failure Criterion of Microcapsule-Based Self-Healing Concrete under Uniaxial and Triaxial Compression. Journal of Building Engineering, Elsevier Ltd. 2023. № 65. https://doi.org/10.1016/j.jobe.2022.105773.
  94. Li X., Liu R., Li S., Zhang C., Yan J., Liu Y., Sun X., Su P. Properties and Mechanism of Self-Healing Cement Paste Containing Microcapsule under Different Curing Conditions. Construction and Building Materials, Elsevier Ltd. 2022. № 357. https://doi.org/10.1016/j.conbuildmat.2022.129410.
  95. Han R., Wang X., Zhu G., Han N., Xing F. Investigation on Viscoelastic Properties of Urea-Formaldehyde Microcapsules by Using Nanoindentation. Polymer Testing, Elsevier Ltd. 2019. № 80. https://doi.org/10.1016/j.polymertesting.2019.106146
  96. Junwale R.D., Bhutange S.P., Latkar, M.V. Effect of Enzyme Induced Carbonate Precipitate on Mechanical Properties of PPC Mortar. Materials Today: Proceedings, Elsevier Ltd. 2023. https://doi.org/10.1016/j.matpr.2023.02.359
  97. Zhang Y., Guo H.X., Cheng X.H. Role of Calcium Sources in the Strength and Microstructure of Microbial Mortar. Construction and Building Materials, Elsevier Ltd. 2015. № 77. P. 160 – 167. https://doi.org/10.1016/j.conbuildmat.2014.12.040
  98. Xiang J., Qiu J., Wang Y., Gu X. Calcium Acetate as Calcium Source Used to Biocement for Improving Performance and Reducing Ammonia Emission. Journal of Cleaner Production, Elsevier Ltd. 2022. № 348. https://doi.org/10.1016/j.jclepro.2022.131286
  99. Choi S.-G., Wu S., Chu J. Biocementation for Sand Using an Eggshell as Calcium Source. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers (ASCE). 2016. № 142. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534
  100. Choi S.G., Chu J., Brown R.C., Wang K., Wen Z. Sustainable Biocement Production via Microbially Induced Calcium Carbonate Precipitation: Use of Limestone and Acetic Acid Derived from Pyrolysis of Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, American Chemical Society. 2017. № 5. P. 5183 – 5190. https://doi.org/10.1021/acssuschemeng.7b00521
  101. Liu L., Liu H., Xiao Y., Chu J., Xiao P., Wang Y. Biocementation of Calcareous Sand Using Soluble Calcium Derived from Calcareous Sand. Bulletin of Engineering Geology and the Environment, Springer Verlag. 2018. № 77. P. 1781 – 1791. https://doi.org/10.1007/s10064-017-1106-4
  102. Xu J., Du Y., Jiang Z., She A. Effects of Calcium Source on Biochemical Properties of Microbial CaCo3 Precipitation. Frontiers in Microbiology, Frontiers Research Foundatio. 2015. № 6. https://doi.org/10.3389/fmicb.2015.01366
  103. Lee Y.S., Par, W. Current Challenges and Future Directions for Bacterial Self-Healing Concrete. Applied Microbiology and Biotechnology, Springer Verlag. 2018. № 102. P. 3059 – 3070. https://doi.org/10.1007/s00253-018-8830-y
  104. Zhou Y., Elchalakani M., Du P., Sun C., Zhang Z., Wang H. Sunlight to Heal Mortar Cracks: Photocatalytic Self-Healing Mortar. Cement and Concrete Composites, Elsevier Ltd. 2023. № 135. https://doi.org/10.1016/j.cemconcomp.2022.104816
  105. Reeksting B.J., Hoffmann T.D., Tan L., Paine K., Gebhard S. In-Depth Profiling of Calcite Precipitation by Environmental Bacteria Reveals Fundamental Mechanistic Differences with Relevance to Application. Applied and Environmental Microbiology, American Society for Microbiology. 2020. № 86. https://doi.org/10.1128/AEM.02739-19
  106. Gupta S., Pang S.D., Kua H.W. Autonomous Healing in Concrete by Bio-Based Healing Agents – A Review. Construction and Building Materials, Elsevier Ltd. 2017. № 146. P. 419 – 428. https://doi.org/10.1016/j.conbuildmat.2017.04.111
  107. Shivanshi S., Chakraborti G., Sandesh Upadhyaya K., Kannan N. A Study on Bacterial Self-Healing Concrete Encapsulated in Lightweight Expanded Clay Aggregates. Materials Today: Proceedings, Elsevier Ltd. 2023. https://doi.org/10.1016/j.matpr.2023.03.541
  108. Wang X., Xu J., Wang Z., Yao W. Use of Recycled Concrete Aggregates as Carriers for Self-Healing of Concrete Cracks by Bacteria with High Urease Activity. Construction and Building Materials, Elsevier Ltd. 2022. № 337. https://doi.org/10.1016/j.conbuildmat.2022.127581

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).