Optimization of a typical condensation process using the example of isophorone synthesis in a microchannel


Cite item

Full Text

Abstract

the work is devoted to the method of obtaining isophorone in a microchannel. Numerical and experimental optimization of the process of obtaining isophorone in a microchannel has been carried out. Isophorone is an unsaturated cyclic ketone, widely used in industry as a solvent for nitrocellulose paints, as well as as an intermediate for the synthesis of other compounds. The synthesis was carried out in microchannels. Microchannels are channels with a diameter of less than 1 mm. Their main feature is the possibility of carrying out various types of reactions requiring high pressures and temperatures. Due to the small internal volume, all processes occurring in them are easily intensified, high accuracy and efficiency of the experiment can be achieved. Parameters such as reaction temperature and reagent consumption varied. A new approach to conducting the experiment was used, based on minimizing the control parameters used and combining them correctly. This approach requires high accuracy and reproducibility of the results, so the microchannels used in this work are the best choice for such tasks. A mathematical model of the reaction based on systems of equations of varying complexity has been developed. Three-dimensional and two-dimensional contour diagrams are constructed to visualize the mathematical model of the process. The best technological parameters of the process have been established.

About the authors

M. V Shishanov

D.I. Mendeleev Russian University of Chemical Technology

ORCID iD: 0000-0003-2861-5878

Kh. G Kuk

D.I. Mendeleev Russian University of Chemical Technology

ORCID iD: 0009-0005-7115-6760

B. Tambura

Bamako University of Science and Technology

ORCID iD: 0009-0009-5931-9757

Yu. Chou

Nanjing University of Science and Technology

References

  1. Timm Ruther, Marc-Andre Muller, Werner Bonrath, Matthias Eisenacher. The Production of Isophorone // Encyclopedia. 2023. № 3. P. 224 – 244. doi: 10.3390/encyclopedia3010015
  2. Jorge Quesada, Laura Faba, Eva Díaz, Simona Bennici, Aline Auroux, Salvador Ordóñez, Role of surface intermediates in the deactivation of Mgsingle bonder mixed oxides in acetone self-condensation: A combined DRIFT and ex situ characterization approach // Journal of Catalysis. 2015. № 329. P. 1 – 9. doi: 10.1016/j.jcat.2015.04.029
  3. Jun Mei, Zhirong Chen, Shenfeng Yuan, Jianyong Mao, Haoran Li, Hong Yin. Kinetics of Isophorone Synthesis via Self-Condensation of Supercritical Acetone // Chemical Engineering Technology. 2016. № 39. P. 1867 – 1874. https://doi.org/10.1002/ceat.2016000806
  4. Yan Liu, Wen Yan Luo, YMgAl-LDO Synthesis and its Catalytic Performance for Preparation of Isophorone by Condensation of Acetone // Current Micro-Nano Science and Technology. 2015. № 1118. P. 265 – 269. https://doi.org/10.4028/www.scientific.net/AMR.1118.265
  5. Daniela Lovric A., Jean Elena Pat. 2023040249 Japan, The production of Isophorine. 2023.
  6. Thomas W Microreactors in Organic Chemistry and Catalysis // John Wiley & Sons Limited. 2011. P. 5.
  7. Шишанов М.В., Кук Х.Г., Досов К.А., Яшунин Д.В., Большаков И.А., Морозов Н.В. Моделирование проточных микрореакторов // Современные наукоемкие технологии. Региональное приложение. 2023. № 75 (3). С. 97 – 106.
  8. Шишанов М.В., Кук Х.Г., Досов К.А., Яшунин Д.В., Большаков И.А., Морозов Н.В. Смешение в микрофлюидике // Современные наукоёмкие технологии. Региональное приложение. 2023. № 4 (76). С. 103 – 109.
  9. Chaoqun Y., Yuchao Z., Haiyun M. Two-phase flow and mass transfer in microchannels: A review from local mechanism to global models // Chemical Engineering Science. 2021. № 229. P. 116 – 117. doi: 10.1016/j.ces.2020.116017
  10. Dey R., Buness C.M., Hokmabad B.V. et al. Oscillatory rheotaxis of artificial swimmers in microchannels // Nat Commun. 2022. № 13. P. 29 – 52. doi: 10.1038/s41467-022-30611-1

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).