The Review of corrosion protection by nanotubes TiO2 and BTA/TiO2 nanotubes dispersed in Epoxy and proposed method for preparation of anti-corrosion coating from this material assisted by ultrasound

Cover Page

Cite item

Full Text

Abstract

this review presents the corrosion resistance of epoxy coatings containing TiO2 nanotubes and BTA (benzotriazole)-modified TiO2 nanotubes. The purpose of the study is to examine how effectively these materials protect against corrosion on metal surfaces in various environments. The synthesis of TiO2 nanotubes and BTA/TiO2 nanotubes in epoxy coatings offers a promising approach to significantly enhance corrosion resistance while also opening considerable potential for applications in industries requiring high durability and material protection.

About the authors

V. Z Vu

Moscow Automobile and Highway State Technical University (MADI)

Author for correspondence.
Email: vandungph2605@gmail.com

R. I Nigmetzyanov

Moscow Automobile and Highway State Technical University (MADI)

Email: lefmo@yandex.ru

References

  1. Lin J., Ottenbrite R.M. Surface modification of inorganic oxide particles with silane coupling agent and organic dyes // Polym Adv Technol. 2001. Vol. 12. № 5. P. 285 – 292. https://doi.org/10.1002/pat.64
  2. Tsai C.C., Teng H. Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment // Chemistry of Materials. 2004. Vol. 16. № 22. P. 4352 – 4358. https://doi.org/10.1021/cm049643u
  3. Kim J.Y., Sekino T., Park D.J., Tanaka S.I. Morphology modification of TiO2 nanotubes by controlling the starting material crystallite size for chemical synthesis // Journal of Nanoparticle Research. 2011. Vol. 13. P. 2319 – 2327. https://doi.org/10.1007/s11051-010-9990-6
  4. Chen Quan, Yakovlev N.L. Adsorption and interaction of organosilanes on TiO2 nanoparticles // Applied Surface Science. 2010. Vol. 257. № 5. P. 1395 – 1400. https://doi.org/10.1016/j.apsusc.2010.08.036
  5. Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K. Titania nanotubes prepared by chemical processing // Advanced materials. 1999. Vol. 11. № 15. P. 1307 – 1311. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
  6. Shen M., Almallahi R., Rizvi Z., Gonzalez-Martinez E., Yang G., Robertson M.L. Accelerated hydrolytic degradation of ester-containing biobased epoxy resins // Polymer Chemistry. 2019. Vol. 10. № 23. P. 3217 – 3229. https://doi.org/10.1039/C9PY00240E
  7. Njoku D.I., Cui M., Xiao H., Shang B., Li Y. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques // Scientific reports. 2017. Vol. 7. № 1. P. 15597. https://doi.org/10.1038/s41598-017-15845-0
  8. Atta A.M., El-Saeed A.M., El-Mahdy G.M., Al-Lohedan H.A. Atta. Application of magnetite nano-hybrid epoxy as protective marine coatings for steel // RSC advances. 2015. Vol. 5. № 123. P. 101923 – 101931. [https://doi.org/10.1039/C5RA20730D
  9. Wang C., Mao H., Wang C., Fu S. Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent // Industrial & engineering chemistry research. 2011. Vol. 50. № 21. P. 11930 – 11934. https://doi.org/10.1021/ie200887x
  10. Lenz D.M., Delamar M., Ferreira C.A. Application of polypyrrole/TiO2 composite films as corrosion protection of mild steel // Journal of Electroanalytical Chemistry. 2003. Vol. 540. P. 35 – 44. https://doi.org/10.1016/S0022-0728(02)01272-X
  11. Kobayashi K., Takewaka K. Experimental studies on epoxy coated reinforcing steel for corrosion protection // International Journal of Cement Composites and Lightweight Concrete. 1984. Vol. 6. № 2. P. 99 – 116. https://doi.org/10.1016/0262-5075(84)90039-3
  12. Reeta Gupta, Subhash Chandra Evaluation of acoustical characteristics of ultrasonic transducer backing materials at high hydrostatic pressures // Ultrasonics. 1998. Vol. 36. № 1-5. P. 37 – 40. https://doi.org/10.1016/S0041-624X(97)00153-4
  13. Palanivelu, Saravanan, Duraibabu Dhanapal, Ananda Kumar Srinivasan Palanivelu. Studies on silicon containing nanohybrid epoxy coatings for the protection of corrosion and bio-fouling on mild steel // Silicon. 2017. Vol. 9. № 3. P. 447 – 458. https://doi.org/10.1007/s12633-014-9202-6
  14. Pour Z.S., Ghaemy M., Bordbar S., Karimi-Maleh H. Effects of surface treatment of TiO2 nanoparticles on the adhesion and anticorrosion properties of the epoxy coating on mild steel using electrochemical technique // Progress in Organic Coatings. – 2018. –Vol.119. P. 99 – 108. https://doi.org/10.1016/j.porgcoat.2018.02.01]
  15. Rahmani Pooria, Akbar Shojaei, Nahid Pirhady Tavandashti Nanodiamond loaded with corrosion inhibitor as efficient nanocarrier to improve anticorrosion behavior of epoxy coating // Journal of Industrial and Engineering Chemistry. 2020. Vol .83. P. 153 – 163. https://doi.org/10.1016/j.jiec.2019.11.023
  16. Aboorvakani R., John S. Kennady Vethanathan, Madhu K.U. Aboorvakani. Influence of Zn concentration on zinc oxide nanoparticles and their anti-corrosion property // Journal of Alloys and Compounds. 2020. Vol. 834. P. 155078. https://doi.org/10.1016/j.jallcom.2020.155078
  17. Fadl A.M., Abdou M.I., Al-Elaa S.A., Hamza M.A., Sadeek S.A. Fadl. Evaluation the anti-corrosion behavior, impact resistance, acids and alkali immovability of nonylphenol ethoxylate/TiO2 hybrid epoxy nanocomposite coating applied on the carbon steel surface // Progress in Organic Coatings. 2019. Vol. 136. P. 105263. https://doi.org/10.1016/j.porgcoat.2019.105263
  18. Lenz Denise M., Michel Delamar, Carlos A. Ferreira Lenz. Application of polypyrrole/TiO2 composite films as corrosion protection of mild steel // Journal of Electroanalytical Chemistry. 2003. Vol. 540. P. 35 – 44. https://doi.org/10.1016/S0022-0728(02)01272-X
  19. Shen G.X., Chen Y.C., Lin C.J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method // Thin Solid Films. 2005. Vol. 489. № 1-2. P. 130 – 136. https://doi.org/10.1016/j.tsf.2005.05.016
  20. Mahulikar Pramod P., Rajendra S. Jadhav, Dilip G. Hundiwale. Performance of polyaniline/TiO2 nanocomposites in epoxy for corrosion resistant coatings. 2011.
  21. Neville E.M., MacElroy J.D., Thampi K.R., Sullivan J.A. Neville. Visible light active C-doped titanate nanotubes prepared via alkaline hydrothermal treatment of C-doped nanoparticulate TiO2: photoelectrochemical and photocatalytic properties // Journal of Photochemistry and Photobiology A: Chemistry. 2013. Vol. 267. P. 17 – 24 [https://doi.org/10.1016/j.jphotochem.2013.06.008]
  22. Ranjitha A., Muthukumarasamy N., Thambidurai M., Velauthapillai D., Agilan S., Balasundaraprabhu R.A. Ranjitha. Effect of reaction time on the formation of TiO2 nanotubes prepared by hydrothermal method // Optik. 2015. Vol. 126. № 20. P. 2491 – 2494. https://doi.org/10.1016/j.ijleo.2015.06.022
  23. Arunchandran C., Ramya S., George R.P., Mudali U.K. Arunchandran. Self-healing corrosion resistive coatings based on inhibitor loaded TiO2 nanocontainers // Journal of the electrochemical Society. 2012. Vol. 159. № 11. P. 552 – 559. https://10.1149/2.020212jes
  24. Kumar K., Ghosh P.K., Kumar A. Improving mechanical and thermal properties of TiO2-epoxy nanocomposite // Composites Part B: Engineering. 2016. Vol. 97. P. 353 – 360. https://doi.org/10.1016/j.compositesb.2016.04.080
  25. Sakthipandi K., Sethuraman B., Venkatesan K., Alhashmi B., Purushothaman G., Ansari I.A. Ultrasound-Based Sonochemical Synthesis of Nanomaterials / Handbook of Vibroacoustics, Noise and Harshness. Springer, Singapore. 2024. https://doi.org/10.1007/978-981-99-4638-9_58-1
  26. Brooman E.W. Modifying organic coatings to provide corrosion resistance: Part II – Inorganic additives and inhibitors // Metal Finishing. 2002. Vol. 100. № 5. P. 42 – 53. https://doi.org/10.1016/S0026-0576(02)80382-8
  27. Zheludkevich M.L., Shchukin, D.G., Yasakau, K.A., Möhwald H., Ferreira M.G. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor // Chemistry of Materials. 2007. Vol. 19. № 5. P. 402 – 411. https://doi.org/10.1021/cm062066k
  28. Chen X., Mao S.S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications // Chemical reviews. 2007. Vol. 107. № 7. P. 2891 – 2959. https://doi.org/10.1021/cr0500535
  29. White S.R., Sottos N.R., Geubelle P.H., Moore J.S., Kessler M.R., Sriram S.R., Viswanathan S. Autonomic healing of polymer composites // Nature. 2001. Vol. 409. № 6822. P. 794 – 797. https://doi.org/10.1038/35057232
  30. Dung Vu.V., Nigmetzyanov R.I. Increasing the anti-corrosion protection of metal surfaces using a composite epoxy coating with BTA-TiO2 nanotubes treated with ultrasound: a review // International Journal of Humanities and Natural Sciences. 2024. No. 9-1 (96). P. 131 – 135. 10.24412/2500-1000-2024-9-1-131-135' target='_blank'>https://doi: 10.24412/2500-1000-2024-9-1-131-135
  31. Ван З., Кольдюшов В.К., Нигметзянов Р.И. Перспективы использования ультразвука при нанесении защитных композиций с нанонитями БТА-TiO2 // Научный аспект. 2024. Т. 7. № 5. С. 859 – 867.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).