Thermal decomposition of low-density polyethylene: kinetic study using TGA and DTG data

Cover Page

Cite item

Full Text

Abstract

pyrolysis of low-density polyethylene (LDPE) waste is considered as a highly efficient and promising recycling method. The aim of this work is to investigate the pyrolysis kinetics using three model-free methods (Friedman, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS)) and two model-fitting methods (Arrhenius and Coates-Redfern). Thermogravimetric (TGA) and differential thermogravimetric (DTG) thermograms at 5, 10, 20 and 40 K min−1 showed a linear curve, which implies the first-order reactions. The kinetic parameter values (E_A and A) of LDPE were calculated at different conversions by three model-free methods, and the average values of activation energies obtained were in good agreement and ranged from 190.23 to 191.89 kJ/mol. These kinetic parameters were additionally calculated at different heating rates using the Arrhenius and Coates-Redfern methods.

About the authors

R. A Karasev

Dostoevsky Omsk State University

Author for correspondence.
Email: roman_karasyov@mail.ru

References

  1. Abdullahi Shagali A. and others. Fast co-pyrolysis of corncob with plastics: Evaluation of thermal behavior using deconvolution procedure, kinetic analysis and product characterization // Fuel. 2025. Vol. 381. P. 1333002.
  2. Abedeen A., Hossain M.S., Rahman A.N.M.M. and others. Characterization and energy recovery of fuels from medical waste via thermal pyrolysis // Heliyon. 2025. Vol. 11. № 4. P. e425993.
  3. Ai Z., Zhang W., Yang L. et al. Investigation and prediction of co-pyrolysis between oily sludge and high-density polyethylene via in-situ DRIFTS, TGA, and artificial neural network // Journal of Analytical and Applied Pyrolysis. 2022. Vol. 166. P. 1056104.
  4. Altarawneh S., Al-Harahsheh M., Dodds C.et al. Thermodynamic, pyrolytic, and kinetic investigation on the thermal decomposition of polyvinyl chloride in the presence of franklinite // Process Safety and Environmental Protection. 2022. Vol. 168. P. 558 – 5695.
  5. Aniśko-Michalak J., Kosmela P., Barczewski M. On the use of black tea waste as a functional filler for manufacturing self-stabilizing polyethylene composites: In-depth thermal analysis // Industrial Crops and Products. 2025. Vol. 223. P. 1201816.
  6. Chen B., Xie D., Jiang Y. Co-pyrolysis of corn stalk and high-density polyethylene with emphasis on the fibrous tissue difference on thermal behavior and kinetics // Science of The Total Environment. 2024. Vol. 957. P. 1778477.
  7. Enyoh C.E., Ovuoraye P.E., Rabin M.H. Thermal degradation evaluation of polyethylene terephthalate microplastics: Insights from kinetics and machine learning algorithms using non-isoconversional TGA data // Journal of Environmental Chemical Engineering. 2024. Vol. 12. № 2. P. 1119098.
  8. Guo S., Wang Z., Chen G. Co-pyrolysis characteristics of forestry and agricultural residues and waste plastics: Thermal decomposition and products distribution // Process Safety and Environmental Protection. 2023. Vol. 177. P. 380 – 3909.
  9. Mahapatra P.M., Pradhan D., Kumar S., Panda A.K. Influence of polypropylene and high-density polyethylene on isothermal pyrolytic degradation of discarded bakelite: Kinetic analysis and batch pyrolysis studies // Process Safety and Environmental Protection. 2024. Vol. 191. P. 769 – 77910.
  10. Najafi H., Rezaei Z. Laye, Sobati M.A. Deep insights on the Co-pyrolysis of tea stem and polyethylene terephthalate (PET): Unveiling synergistic effects and detailed kinetic modeling // Journal of Environmental Chemical Engineering. 2024. Vol. 12. № 5. P. 11390611.
  11. Natesakhawat S., Weidman J., Garcia S. et al. Pyrolysis of high-density polyethylene: Degradation behaviors, kinetics, and product characteristics // Journal of the Energy Institute. 2024. Vol. 116. P. 10173812.
  12. Nazari M.A., Haydary J. Pyrolysis behavior of densified refuse-derived fuels (d-RDFs) via TGA: Investigating the impact of densification degree on thermal kinetics and thermodynamics // Journal of the Energy Institute. 2024. Vol. 115. P. 10170013.
  13. Ong M.Y., Milano J., Nomanbhay S. et al. Insights into algae-plastic pyrolysis: Thermogravimetric and kinetic approaches for renewable energy // Energy. 2025. Vol. 314. P. 13432214.
  14. Roy A., Panda S., Gupta J. Effects of interfacial interactions on structural, optical, thermal degradation properties and photocatalytic activity of low-density polyethylene/BaTiO3 nanocomposite // Polymer. 2023. Vol. 276. P. 12593215.
  15. Shagali A.A., Hu S., Li H. Thermal behavior, synergistic effect and thermodynamic parameter evaluations of biomass/plastics co–pyrolysis in a concentrating photothermal TGA // Fuel. 2023. Vol. 331. P. 12572416.
  16. Stanley J., Tarani E., Ainali N.M. Thermal decomposition kinetics and mechanism of poly(ethylene 2,5-furan dicarboxylate) Nanocomposites for food packaging applications // Thermochimica Acta. 2024. Vol. 733. P. 17970017.
  17. Tee M.Y., Wang D., Wong K.-L. Investigating waste valorization potential through the co-pyrolysis of waste activated sludge and polyethylene terephthalate: Analysis on thermal degradation behavior, kinetic properties and by-products // Energy Conversion and Management. 2025. Vol. 325. P. 11941218.
  18. Yousef S., Eimontas J., Meile K. Co-pyrolysis of Baltic wheat straw and low-density polyethylene bags and its kinetic and thermodynamic behaviour // Industrial Crops and Products. 2024. Vol. 218. P. 11897019.
  19. Zhang S., Yao Q., He L. Correction and validation of the Master-plots method for the thermal cracking kinetic mechanism of solvent-swollen polypropylene // Chemical Engineering Science. 2025. Vol. 306. P. 12130420.
  20. Żukowski W., Berkowicz-Płatek G., Wrona J. Thermal decomposition of polyolefins under different oxygen content. Kinetic parameters evaluation // Energy. 2024. Vol. 293. P. 130565

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).