Свойства и молекулярно-структурные особенности ферментативно-гидролизованных белков горохового изолята и вторичного крахмало-белкового продукта

Обложка

Цитировать

Полный текст

Аннотация

В ходе исследований изучены функциональные характеристики и молекулярная структура ферментативно-гидролизованного горохового изолята и вторичного крахмало-белкового продукта, полученных методом ферментативной экстракции муки с применением отечественных карбогидраз и протеазы. Установлена взаимосвязь между структурными особенностями белков, их функциональными свойствами и биодоступностью. Изолят содержал 94 % белка, имел светло-кремовый цвет и слабый привкус гороха. По сравнению с изолятом, полученным традиционной щелочной экстракцией, он отличался повышенными показателями растворимости (на 23,40 %), пенообразующей способности (на 35,56 %), жиросвязывающей способности (на 33,48 %), перевариваемости in vitro (на 11,79 %) и увеличенным содержанием β-изгибов в структуре белка (в 2,32 раза). Активность уреазы, в сравнении с исходной гороховой мукой, в исследуемом изоляте снизилась в 5 раз. Увеличение пенообразующей способности белков изолята и снижение стабильности пены связано с высоким содержанием β-структур и со снижением количества α-спиралей. Повышенная пористость частиц белков исследуемого изолята способствовала увеличению растворимости его в воде и атакуемости ферментами желудочно-кишечного тракта, в сравнении с изолятом, полученным традиционным способом. Крахмало-белковый продукт содержал около 75 % крахмала и 10 % белка, обладал молочным цветом, мучнистым вкусом со слабым привкусом гороха. Также в сравнении с мукой продукт имел расщепленную структуру, увеличенные показатели перевариваемости белков in vitro (на 2,81 %), содержания в белке α-спиралей (на 67,90 %), β-изгибов (в 2,37 раза) со снижением количества β-слоя (в 10,12 раза) и активности уреазы. С учетом достигнутых результатов гороховый изолят, полученный ферментативной экстракцией российскими ферментами, целесообразно рекомендовать в качестве белкового ингредиента при изготовлении напитков на растительной основе и продуктов питания с пенной системой, а крахмало-белковый продукт — в технологии изготовления экструзионных снеков.

Об авторах

Д. С. Куликов

Всероссийский научно-исследовательский институт технологии консервирования

Автор, ответственный за переписку.
Email: ansori.anm@gmail.com
кандидат технических наук, старший научный сотрудник, лаборатория процессов и оборудования консервного производства 142703, Московская область, Видное, ул. Школьная, 78

А. А. Королев

Всероссийский научно-исследовательский институт технологии консервирования

Email: ansori.anm@gmail.com
кандидат технических наук, заведующий лабораторией процессов и оборудования консервного производства 142703, Московская область, Видное, ул. Школьная, 78

В. А. Пчелкина

Федеральный научный центр пищевых систем им. В. М. Горбатова

Email: ansori.anm@gmail.com
кандидат технических наук, ведущий научный сотрудник, Экспериментальная клиника-лаборатория биологически активных веществ животного происхождения 109316, Москва, ул. Талалихина, 26

Список литературы

  1. Урубков, С. А., Королёв, А. А., Смирнов, С. О. (2022). Разработка рецептур каш и крупяных продуктов для диетического профилактического питания. Техника и технология пищевых производств, 52(3), 536–544. https://doi.org/10.21603/2074-9414-2022-3-2380
  2. Ismail, B. P., Senaratne-Lenagala, L., Stube, A., Brackenridge, A. (2020). Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Animal Frontiers, 10(4), 53–63. https://doi.org/10.1093/af/vfaa040
  3. Webber, J. (2023). How many CO2 emissions does the meat industry actually produce? Plant based news. Retrieved from: https://plantbasednews.org/opinion/the-long-read/emissions-meat-industry Accessed March 28, 2025.
  4. Экспертно-аналитический центр агробизнеса «АБ-Центр». (2024). Прогноз сборов гороха в России в 2024 году. Электронный ресурс: https://abcentre.ru/news/prognoz-sborov-goroha-v-rossii-v-2024-godu?ysclid=m8sn6qjq9e598121550 Дата обращения: 28.03.2025.
  5. Куликов, Д. С., Королев, А. А. (2025). Аспекты ферментативной модификации растительных белков. Пищевые системы, 8(1), 22–28. https://doi.org/10.21323/2618-9771-2024-8-1-22-28
  6. Вебер, А. Л., Леонова, С. А. (2024). Изменения биологической и пищевой ценности зерна гороха и фасоли в результате его биоактивации. Вестник МГТУ. Труды Мурманского государственного технического университета, 27(3), 282–293. https://doi.org/10.21443/1560-9278-2024-27-3-282-293
  7. Samtiya, M., Aluko, R. E., Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production, Processing and Nutrition, 2, Article 6. https://doi.org/10.1186/s43014-020-0020-5
  8. Khodaei, D., Noci, F., Ryan, L. (2025). Optimizing protein bars with whey protein isolate, pea protein isolate, and blue whiting (Micromesistius poutassou) fish protein hydrolysate: A simplex-centroid mixture design study. Food Science and Nutrition, 13, Article e4701. https://doi.org/10.1002/fsn3.4701
  9. Leiva-Castro, B., Mamani-Benavente, L., Elías-Peñafiel, C., Comettant-Rabanal, R., Silva-Paz, R., Olivera-Montenegro, L. et. al. (2025). Andean pseudocereal flakes with added pea protein isolate and banana flour: Evaluation of physical — chemical, microstructural, and sensory properties. Foods, 14, Article 620. https://doi.org/10.3390/foods14040620
  10. Öztürk, Z., Lille, M., Rosa-Sibakov, N., Sozer, N. (2024). Impact of heat treatment and high moisture extrusion on the in vitro protein digestibility of sunflower and pea protein ingredients. LWT, 214, Article 117133. https://doi.org/10.1016/j.lwt.2024.117133
  11. Wójcik, M., Różyło, R., Schönlechner, R., Berger, M.V. (2021). Physico-chemical properties of an innovative gluten-free, low-carbohydrate and high protein-bread enriched with pea protein powder. Scientific Reports, 11(1), Article 14498. https://doi.org/10.1038/s41598-021-93834-0
  12. Nguyen, N. P. M., Marzec, A. (2024). Effect of microwave–vacuum drying and pea protein fortification on pasta characteristics. Processes, 12(11), Article 2508. https://doi.org/10.3390/pr12112508
  13. Bustillos, M. A., Jonchère, C., Garnier, C., Réguerre, A. L., Valle, G. D. (2020). Rheological and microstructural characterization of batters and sponge cakes fortified with pea proteins. Food Hydrocolloids, 101, Article 105553. https://doi.org/10.1016/j.foodhyd.2019.105553
  14. Колпакова, В. В., Куликов, Д. С., Гулакова, В. А., Уланова, Р. В., Бессонов, В. В. (2024). Кисломолочный продукт функционального назначения с гороховым концентратом. Пищевая промышленность, 6, 126–132. https://doi.org/10.52653/PPI.2024.6.6.026
  15. Plattner, B. J., Hong, S., Li, Y., Talavera, M. J., Dogan, H., Plattner, B. S. et al. (2024). Use of pea proteins in high-moisture meat analogs: physicochemical properties of raw formulations and their texturization using extrusion. Foods, 13(8), Article 1195. https://doi.org/10.3390/foods13081195
  16. Hanley, L., Dobson, S., Stobbs, J., Marangoni, A. G. (2025). Physicochemical and functional characterization of plant protein isolates and their influence on plant-based mozzarella cheese performance. Food Hydrocolloids, 164, Article 111222. https://doi.org/10.1016/j.foodhyd.2025.111222
  17. Колпакова, В. В., Уланова, Р. В., Куликов, Д. С., Гулакова, В. А., Семенов, Г. В., Шевякова, Л. В. (2022). Показатели качества гороховых и нутовых белковых концентратов. Техника и технология пищевых производств. 52(4), 650–664. https://doi.org/10.21603/2074-9414-2022-4-2394
  18. Ma, K., Greis, M., Lu, J., Nolden, A., McClements, D., Kinchla, A. (2022). Functional performance of plant proteins. Foods, 11, Article 594. https://doi.org/10.3390/foods11040594
  19. Shevkani, K., Singh, N., Chen Y., Kaur, A., Yu, L. (2019). Pulse proteins: Secondary structure, functionality and applications. Journal of Food Science and Technology, 56, 2787–2798. https://doi.org/10.1007/s13197-019-03723-8
  20. Nasrabadi, M. N., Doost, A. S., Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118, Article 106789. https://doi.org/10.1016/j.foodhyd.2021.106789
  21. Lu, Z. X., He, J. F., Zhang, Y. C., Bing, D. J. (2020). Composition, physicochemical properties of pea protein and its application in functional foods. Critical Reviews in Food Science and Nutrition, 60(15), 2593–2605. https://doi.org/10.1080/10408398.2019.1651248
  22. Kravchenko, I. V., Furalyov, V. A., Kostyleva, E. V., Sereda, A. S., Kurbatova, E. I., Tsurikova, N. V. et. al. (2024). Effect of different classes of proteases on the techno-functional properties of pea protein isolates. Applied Biochemistry and Microbiology, 60, 106–117. https://doi.org/10.1134/S0003683824010083
  23. Kravchenko, I. V., Furalyov, V. A., Pshennikova, E. S., Kostyleva, E. V., Sereda, A. S., Kurbatova, E. I. et. al. (2024). The effect of various domestically produced proteolytic enzyme preparations on the organoleptic properties of pea protein isolates. Applied Biochemistry and Microbiology, 60(4), 656–662. https://doi.org/10.1134/S0003683824604335
  24. Колпакова, В. В., Фан, К. Ч., Гайворонская, И. С., Чумикина, Л. В. (2023). Свойства и структурные особенности белков нативных и модифицированных концентратов из белого и коричневого риса. Пищевые системы, 6(3), 317–328. https://doi.org/10.21323/2618-9771-2023-6-3-317-328
  25. Дегтярев, И. А., Гаравири, М., Фоменко, И. А., Вострикова, Н. Л., Машенцева, Н. Г. (2025). Сравнение функционально-технологических свойств и аминокислотного состава изолятов белка растительного происхождения. Вестник Крас-ГАУ, 2(215), 202–215. https://doi.org/10.36718/1819-4036-2025-2-202-215
  26. Василевская, Е. Р., Арюзина, М. А., Ахремко, А. Г. (2022). Биоконверсия in vitro: сравнение мультиферментных систем INFOGEST 2.0 и протокола Покровского-Ертанова. Все о мясе, 6, 44–49. https://doi.org/10.21323/2071-2499-2022-6-44-49
  27. Zhao, H., Shen, C., Wu, Z., Zhang, Z., Xu, C. (2020). Comparison of wheat, soybean, rice, and pea protein properties for effective applications in food products. Journal of Food Biochemistry, 44, Article e13157. https://doi.org/10.1111/jfbc.13157
  28. Lv, T., Wang, Y., Pan, D., Cao, J., Zhang, X., Sun, Y., et. al. (2017). Effect of trypsin treatments on the structure and binding capacity of volatile compounds of myosin. Food Chemistry, 214, 710–716. https://doi.org/10.1016/j.foodchem.2016.07.115
  29. Jeong, M.-S., Cho, S.-J. (2024). Effect of pH-shifting on the water holding capacity and gelation properties of mung bean protein isolate. Food Research International, 177, Article 113912. https://doi.org/10.1016/j.foodres.2023.113912
  30. Stawoska, I., Wesełucha-Birczyńska, A., Skoczowski, A., Dziurka, M., Waga, J. (2021). FT-Raman spectroscopy as a tool to study the secondary structures of wheat gliadin proteins. Molecules, 26(17), Article 5388. https://doi.org/10.3390/molecules26175388
  31. Wiercigroch, E., Szafraniec, E., Czamara, K., Pacia, M. Z., Majzner, K., Kochan, K. et al. (2017). Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 185, 317–335. https://doi.org/10.1016/j.saa.2017.05.045
  32. Volant, C., Gilet, A., Beddiaf, F., Collinet-Fressancourt, M., Falourd, X., Descamps, N. et al. (2020). Multiscale structure of starches grafted with hydrophobic groups: A new analytical strategy. Molecules, 25(12), Article 2827. https://doi.org/10.3390/molecules25122827
  33. Hunt, N. T. (2024). Using 2D-IR spectroscopy to measure the structure, dynamics, and intermolecular interactions of proteins in H2O. Accounts of Chemical Research, 57(5), 685–692. https://doi.org/10.1021/acs.accounts.3c00682
  34. Yu, D., Zhang, X., Zou, W., Tang, H., Yang, F., Wang, L. et al. (2021). Raman spectroscopy analysis of the effect of electrolysis treatment on the structure of soy protein isolate. Journal of Food Measurement and Characterization, 15, 1294–1300. https://doi.org/10.1007/s11694-020-00716-6
  35. Guo, J., Jiang, S., Lu, B., Zhang, W., Zhang, Y., Hu, X. et al. (2025). Exploring the potential of microscopic hyperspectral, Raman, and LIBS for nondestructive quality assessment of diverse rice samples. Plant Methods, 21(1), Article 25. https://doi.org/10.1186/s13007-025-01345-0
  36. Kuhar, N., Sil, S., Umapathy, S. (2021). Potential of Raman spectroscopic techniques to study proteins. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 258, Article 119712. https://doi.org/10.1016/j.saa.2021.119712
  37. Nawrocka, A., Krekora, M., Niewiadomski, Z., Szymańska-Chargot, M., Krawęcka, A., Sobota, A., Miś, A. (2020). Effect of moisturizing pre-treatment of dietary fibre preparations on formation of gluten network during model dough mixing — A study with application of FT-IR and FT-Raman spectroscopy. LWT, 121, Article 108959. https://doi.org/10.1016/j.lwt.2019.108959
  38. Fernández Sosa, E. I., Chaves, M. G., Quiroga, A. V., Avanza, M. V. (2021). Comparative study of structural and physicochemical properties of pigeon pea (Cajanus cajan L.) protein isolates and its major protein fractions. Plant Foods for Human Nutrition, 76, 37–45. https://doi.org/10.1007/s11130-020-00871-7
  39. Wang, D., Du, H., Dang, X., Zhao, Y., Zhang, J., Liu, R. et al. (2024). Enzymatic hydrolysis processing of soybean meal altered its structure and in vitro protein digestive dynamics in pigs. Frontiers in Veterinary Science, 11, Article1503817. https://doi.org/10.3389/fvets.2024.1503817
  40. Parmar, N., Singh, N., Kaur, A., Virdi, A., Shevkani, K. (2017). Protein and microstructure evaluation of harder-to-cook and easy-to-cook grains from different kidney bean accessions. LWT-Food Science and Technology, 79, 487–495. https://doi.org/10.1016/j.lwt.2017.01.027

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Пищевые системы, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».