Wall materials based on low-grade loams and industrial waste

Capa

Citar

Texto integral

Resumo

Clay raw materials used in Kyrgyzstan for the ceramic industry characterized as low-plasticity , highly sensitive and saline. In addition, the high content of carbonates in loams leads to the production of low-quality bricks. In order to obtain ceramic bricks with high-quality performance characteristics, it is necessary to use innovative approaches in the preparation of clay raw materials. The raw used materials were local loess-like loams from the Orok deposit and ash from the Bishkek thermal power plant and a surfactant – sodium naphthenate. The loam and ash subjected to mechanochemical activation by joint grinding in activator-mixer and adding sodium naphthenate together with mixing water. The dried cylindrical samples fired in the temperature range of 900, 950 and 1000 0 C. The results of the studies showed that mechanochemical activation of ash-clay raw materials increases the plasticity of the clay-ash mass by 140 %, while reducing the molding moisture and sensitivity coefficient. The sintering process is intensified: at a firing temperature of 950 0C and 60 % ash, it is possible to obtain a shard with a density of 1.57 g/cm3 and water absorption of 17 %. The compressive strength is 16.3 MPa. Amorphization and destruction of raw material particles contribute to an increase in the glass phase content. As a result, open pores are tightened, forming a strong monolithic structure. The obtained samples based on mechanochemical activation with the addition of 60 % ash have the M150 grade and frost resistance of F 25.

Sobre autores

E. Sardarbekova

Kyrgyz-Russian Slavic University named after B.N. Yeltsin

ORCID ID: 0000-0001-8563-0682

N. Chernysheva

Peter the Great St. Petersburg Polytechnic University, St. Petersburg

ORCID ID: 0000-0001-8376-5065

A. Matyeva

International University of Innovative Technologies

ORCID ID: 0000-0001-9765-1149

M. Drebezgova

Peter the Great St. Petersburg Polytechnic University, St. Petersburg

ORCID ID: 0000-0002-8458-1951

S. Melibaev

International University of Innovative Technologies

ORCID ID: 0009-0005-5021-524X

I. Borisov

Peter the Great St. Petersburg Polytechnic University, St. Petersburg

ORCID ID: 0000-0001-8663-9750

Bibliografia

  1. Ilina L.V., Tacki L.N., Baryshok L.A. Influence of coarse-grained carbonate inclusions on the quality of ceramic bricks. Modern resource-saving materials and technologies: prospects and application: materials of the International Symposium, Novosibirsk, December 15-17.Novosibirsk: Novosibirsk State University of Architecture and Civil Engineering (Sibstrin), 2020. Р. 165 – 170.
  2. Rehman M. Ul., Ahmad M., Rashid K. Influence of fluxing oxides from waste on the production and physico-mechanical properties of fired clay brick: A review. Journal of Building Engineering. 2020. 27. P. 79 – 87. doi: 10.1016/j.jobe.2020.101216
  3. Kocak A., Karasu B. Differences between dry and wet route tile production. El-Cezeri Journal of Science and Engineering. 2019. 6. P. 8 – 23.
  4. Volosatova K.A., SHamanov V.A. Ceramic Mass Modifiers for the Production of Wall Ceramic Products. Ecology and Industry of Russia. 2021. (25). 11. Р. 54 – 60.
  5. Kotlyar V.D., Nebezhko Yu.I., Semenova M.Yu. Molding properties of clay mixtures in the soft mud brick manufacture. Construction Materials and Products. 2024. 7 (1). 5. https://doi.org/10.58224/2618-7183-2024-7-1-5
  6. Mavlyanov A.S., Sardarbekova E.K. Rheological properties of ceramic masses: improvement by complex material activation. The Russian Automobile and Highway Industry Journal. 2019. 16 (3). 67. Р. 334 – 351.
  7. Nebezhko YU. I. Strukturnye osobennosti keramicheskih mass na osnove suglinkov i tugoplavkih glin pri proizvodstve kirpicha myagkogo formovaniya. Teoriya i praktika povysheniya effektivnosti stroitel'nyh materialov: materialy XVIII Mezhdunar. nauch.-tekhn. konf. molodyh uchenyh, Penza, 2023. Р. 150 – 157.
  8. Flores N.M., Vlasova M., Márquez Aguilar P.A., Kakazey M., Chávez Cano M.M., Matus R.A., Puig T. Development of an energy-saving technology for sintering of bricks from high-siliceous clay by the plastic molding method. Construction and Building Materials. 2020. 242. – doi: 10.1016/j.conbuildmat.2020.118142.
  9. ZHenzhurist I.A., Morozova N.N. Influence of amorphous forms of silica on the colloidality of clay raw material and strength ceramic material. News of higher educational institutions. Construction. 2024. 3 (783). Р. 46 – 57. doi: 10.32683/0536-1052-2024-783-3-46-57
  10. SHahov S.A. Rheological behavior of molding compounds from silica modified clay-ash mixture. News KGASU. 2023. 4 (66). Р. 255 – 266. doi: 10.52409/20731523_2023_4_255
  11. Pan'kova E.I., Batrakova G.M., SHamanov V.A., Martynova A.A. Research of ceramic samples of building materials with modifying additives taken from the chemical enterprises wastes.Theoretical and Applied Ecology. 2022. 4. Р. 137 – 143. doi: 10.25750/1995-4301-2022-4-137-143
  12. Kara-Sal B. K. o., Irgit B. B., Saryg-Ool S. M. o., Saryglar A. SH. Increasing the porosity of ceramic wall materials with the use of cattle faeces. Tuvan State University. Technical and physical and mathematical sciences. 2022. 1 (90). Р. 6 – 16. doi: 10.24411/2221-0458-2022-90-06-16
  13. Naumov A.A., Kotlyar V.D. Ceramic brick from overburden rock of the Klyuchevskoye sandstone deposit.Inzhenernyj vestnik Dona (Rus). 2018. 4. URL: http://ivdon.ru/ru/magazine/archive/n4y2018/5249 (data obrashcheniya: 24.06.2025)
  14. Rajak D., Suman S., Guria C., Kumar G. Sustainable utilization of anthropogenic coal fly ash through mechanical and chemical activation.Advances in Waste Management. 2023. P. 145 – 162. doi: 10.1007/978-3-031-41013-0_7
  15. Abbas S., Saleem M.A., Kazmi S.M.S., Munir M.J. Production of sustainable clay bricks using waste fly ash: mechanical and durability properties. Journal of Building Engineering. 2017. 14. P. 7 – 14. doi: 10.1016/j.jobe.2017.09.008
  16. Dash S., Panda L., Mohanty I., Gupta P. Comparative feasibility analysis of fly ash bricks, clay bricks and fly ash incorporated clay bricks. Magazine of Civil Engineering. 2022. 115. P. 11502. doi: 10.34910/MCE.115.2
  17. Abdrakhimov V. Recycling of waste of coal enrichment and inter-shale clay used for producing ceramic bricks. XXI Century. Technosphere Safety. 2022. 7. P. 106 – 116. doi: 10.21285/2500-1582-2022-2-106-116
  18. Matyeva A., Melibaev S., Sardarbekova E., Mukanbet kyzy E., Asanalieva Zh. Development of the composition and properties of a wall block made of non-autoclaved aerated concrete based on secondary raw materials of the Kyrgyz Republic. Architectural Studies. 2025. 11 (1). P. 46 – 58. doi: 10.56318/as/1.2025.46
  19. Jaradat O., Shakarna M., Karima G., Khattab M., Suleiman H., Sirhan A. Sustainable brick production from stone quarry waste: environmental solutions and performance evaluation. Journal of Building Materials. 2024. 38 (2). P. 110 – 125.
  20. Almusawi J., Obaid A. H., Alkhazraji H., Kamil S. Enhancing mechanical properties of clay brick by using stone powder. Civil and Environmental Engineering. 2024. 20. P. 481 – 490. doi: 10.2478/cee-2024-0037
  21. Rey F., Forero-García E., Romero D. Use of papermaking sludge in the manufacture of bricks for the construction of non-structural walls. Ingeniare. Revista Chilena de Ingeniería. 2024. 31. P. 1 – 12. doi: 10.4067/S0718-33052023000100225
  22. Kizinievic O., Kizinievic V., Trambitski Y., Voisniene V. Application of paper sludge and clay in manufacture of composite materials : properties and biological susceptibility.Journal of Building Engineering. 2022. 48. 104003. doi: 10.1016/j.jobe.2022.104003
  23. Fatema K., Khan M.A.N., Sanzid M.S. Characterization of textile effluent treatment plant sludge and its industrial application in fired clay bricks with health risk assessment.Journal of Environmental Management. 2024. 351. 119965. doi: 10.1016/j.jenvman.2023.119965
  24. Vijayarengan P. Utilizing sludges from tanneries, water treatment plants and textile industries in cement, concrete and brick production: a review. Journal of Environmental Nanotechnology. 2024. 13. P. 135 – 143. doi: 10.13074/jent.2024.06.242638
  25. Benlalla A., Elmoussaouiti M., Dahhou M., Assafi M. Utilization of water treatment plant sludge in structural ceramics bricks.Applied Clay Science. 2015. 118. P. 171 – 177. doi: 10.1016/j.clay.2015.09.012
  26. Tangprasert W., Jaikaew S., Supakata N. Utilization of dredged sediments from Lumsai Canal with rice husks to produce bricks.International Journal of Environmental Science and Development. 2015. 6. P. 217 – 220. doi: 10.7763/IJESD.2015.V6.593
  27. Kelechi S., Adamu M., Uche O., Okokpujie I., Ibrahim Y., Obianyo I. A comprehensive review on coal fly ash and its application in the construction industry. Cogent Engineering, 2022. 9. doi: 10.1080/23311916.2022.2114201
  28. Vakalova V., Revva. Highly porous building ceramics based on «clay-ash microspheres» and «zeolite I.B. -ash microspheres» mixtures.Construction and Building Materials. 2022. (317). P. 125922. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125922
  29. Sardarbekova E. K. Оbtaining high-quality wall material using resource-saving technology. Scientific and information magazine. 2024. 1 (30). Р. 257 – 264.
  30. Tacki L.N., Kuz'michev N. V. Two-stage activation – method of improving the quality of brick plastic molding. News of higher educational institutions. Construction. 2016. 2 (686). Р. 32 – 39.
  31. Kovchur A.S., SHeleg V.K., ZHornik V.I., Kovaleva S.A. Modification of a Ceramic Brick Additives of Inorganic Technogenic Products of Water Treatment of Combined Heat and Power Plant. Nauka i tekhnika. 2020. 19 (3). Р. 204 – 214. doi: 10.21122/2227-1031-2020-19-3-204-214
  32. D'Elia D., Pinto G., Eramo L. C., Giannossa G., Ventruti R., Laviano R. Effects of processing on the mineralogy and solubility of carbonate-rich clays for alkaline activation purpose.Applied Clay Science. 2018. 152. P. 9 – 21. doi: 10.1016/j.clay.2017.11.036
  33. Mañosa J., Calvo-de la Rosa J., Silvello A., Maldonado-Alameda A., Chimenos J. M. Kaolinite structural modifications induced by mechanical activation. Applied Clay Science. 2023. 238. 106918. doi: 10.1016/j.clay.2023.106918
  34. Kása E., Szabados M., Baán K., Kónya Z., Kukovecz Á., Kutus B., Pálinkó I., Sipos P. The dissolution kinetics of raw and mechanochemically treated kaolinites in industrial spent liquor – the effect of the physico-chemical properties of the solids.Applied Clay Science. 2021. 203. 105994. doi: 10.1016/j.clay.2021.105994
  35. Alvarez-Coscojuela A., Mañosa J., Formosa J., Chimenos J.M. Structural characterisation and reactivity measurement of chemically activated kaolinite. Journal of Building Engineering. 2024. 87. 109051. – doi: 10.1016/j.jobe.2024.109051

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).