Experience of concreting a massive monolithic foundation slab
- Autores: Chepurnenko A.S1, Nesvetaev G.V1, Koryanova Y.I1, Shut V.V2, Tyurina V.S1
-
Afiliações:
- Don State Technical University
- LLS «ArtStroy»
- Edição: Volume 8, Nº 5 (2025)
- Páginas: 27-42
- Seção: Articles
- URL: https://journals.rcsi.science/2618-7183/article/view/379655
- DOI: https://doi.org/10.58224/2618-7183-2025-8-5-2
- ID: 379655
Citar
Texto integral
Resumo
Sobre autores
A. Chepurnenko
Don State Technical University
ORCID ID: 0000-0002-9133-8546
G. Nesvetaev
Don State Technical University
ORCID ID: 0000-0003-4153-1046
Yu. Koryanova
Don State Technical University
ORCID ID: 0000-0002-2341-9811
V. Shut
LLS «ArtStroy»
ORCID ID: 0009-0003-6335-0606
V. Tyurina
Don State Technical University
ORCID ID: 0009-0001-6399-401X
Bibliografia
- Kaprielov S.S., Sheinfeld A.V., Kiseleva Yu.A., Prigozhenko O.V., Kardumyan G.S., Urgapov V.I. Experience in constructing unique structures from modified concrete during the construction of the Federation complex. Industrial and civil engineering. 2006. 8. P. 20 – 22.
- Travush V.I., Shakhvorostov A.I. Concreting the lower slab of the box foundation of the tower of the Lakhta Center complex. High-rise buildings. 2015. 1. P. 92 – 101.
- Travush V.I., Nikiforov S.V. Technology of concreting massive structures of foundations of buildings of the MFC "Lakhta Center". Construction and reconstruction. 2025. 2 (118). P. 44 – 55. doi: 10.33979/2073-7416-2025-118-2-44-55
- Tazawa E. Influence of autogenous shrinkage on cracking in high-strength concrete. Proceedings of the 4th International Symposium on Utilization of High-strength/High-performance Concrete, Paris. 1996. P. 321 – 330.
- Maruyama I., Lura P. Properties of early-age concrete relevant to cracking in massive concrete. Cement and Concrete Research. 2019. 123. P. 105770. doi: 10.1016/j.cemconres.2019.05.015
- Semenov K., Kukolev M., Zaichenko N., Popkov S., Makeeva A., Amelina A., Amelin P. Unsteady temperature fields in the calculation of crack resistance of massive foundation slab during the building period. International Scientific Conference on Energy, Environmental and Construction Engineering. Springer, Cham, 2019. P. 455 – 467. doi: 10.1007/978-3-030-42351-3_40
- Aslani F., Nejadi S. Creep and Shrinkage Self-Compacting Concrete (SCC) Analytical Models. Journal of Civil Engineering and Architecture. 2012. 6 (1). P. 93 – 100.
- Nesvetaev G.V., Koryanova Yu.I., Khezhev T.A. Heat dissipation of cement and design the composition of concrete for massive structures. Construction Materials and Products. 2025. 8 (1).P. 3. doi: 10.58224/2618-7183-2025-8-1-3
- Murtazaev S.A.Yu., Saidumov M.S., Alaskhanov A.Kh., Murtazaeva T.S.A. High-strength concretes with increased viability for foundation structures of the MFC "Akhmat-Tower". Fundamental principles of construction materials science. Collection reports International online congress. 2017. P. 875 – 883.
- Lingye L., Zhang C., Pengfei Z., Tian W. Influence of temperature rising inhibitor on temperature and stress field of mass concrete. Case Studies in Construction Materials. 2023. 18. e01888. doi: 10.1016/j.cscm.2023.e01888.
- Liang T., Luo P., Mao Z., Huang X., Deng M., Tang M. Effect of hydration temperature rise inhibitor on the temperature rise of concrete and its mechanism. Materials. 2023. 16 (8). P. 2992. doi: 10.3390/ma16082992
- Chuc N.T., Lam T.V., Bulgakov B.I. Designing the composition of concrete with mineral additives and assessment of the possibility of cracking in cement-concrete pavement. Materials Science Forum. 2018. 931. P. 667 – 673. doi: 10.4028/ href='www.scientific.net/MSF.931.667' target='_blank'>www.scientific.net/MSF.931.667
- Klemczak B., Batog M., Pilch M., Żmij A. Analysis of cracking risk in early age mass concrete with different aggregate types. Procedia engineering. 2017. 193. P. 234 – 241. doi: 10.1016/j.proeng.2017.06.209
- Duc N.A., Khoa H.N., Van Thuc L. Analysis of the effect of construction technology factors on controlling thermal cracking in mass concrete. Journal of Science and Technology in Civil Engineering (JSTCE)-HUCE. 2024. 18 (4). P. 12 – 29. doi: 10.31814/stce.huce2024-18(4)-02
- Kaprielov S.S., Sheinfeld A.V., Chilin I.A. Optimization of concrete technology parameters to ensure thermal crack resistance of massive foundations. Construction materials. 2022. 10. P. 41 – 51. doi: 10.31659/0585-430X-2022-807-10-41-51
- Ha J.H., Su Jung Y., Cho Y. Thermal crack control in mass concrete structure using an automated curing system. Automation in Construction. 2014. 45. P. 16 – 24. 10.1016/j.autcon.2014.04.014
- Fairbairn E.M., Silvoso M.M., Toledo Filho R.D., Alves J.L., Ebecken N.F. Optimization of mass concrete construction using genetic algorithms. Computers & structures. 2004. 82 (2-3). P. 281 – 299. doi: 10.1016/j.compstruc.2003.08.008
- Agakhanov E.K., Kurachev R.M., Chepurnenko A.S., Kulinich I.I. Non-linear heat conduction problem for radiation-heat shield of nuclear reactor. Engineering Journal of Don. 2015. 4. URL: ivdon.ru/ru/magazine/archive/n4y2015/3421
- Aniskin N.A., Nguyen Chong Chyk, Bryansky I.A., Dam Huu Heung. Determination of the temperature field and thermal stress state of the massive of stacked concrete by finite element method. Vestnik MGSU. 2018. 13 (11). P. 1407 – 1418. doi: 10.22227/1997-0935.2018.11.1407-1418
- Smolana A., Klemczak B., Azenha M., Schlicke D. Experiences and analysis of the construction process of mass foundation slabs aimed at reducing the risk of early age cracks. Journal of Building Engineering. 2021. 44. P.102947. doi: 10.1016/j.jobe.2021.102947
- Smolana A., Klemczak B., Azenha M., Schlicke D. Early age cracking risk in a massive concrete foundation slab: Comparison of analytical and numerical prediction models with on-site measurements. Construction and Building Materials. 2021. 301. P. 124135. doi: 10.1016/j.conbuildmat.2021.124135
- Bolgov A.N., Nevsky A.V., Ivanov S.I., Sokurov A.Z. Numerical modeling of temperature stresses in concrete of massive structures during the hardening period. Industrial and civil engineering. 2022. 4. P. 6 – 13. doi: 10.33622/0869-7019.2022.04.06-13.
- Wang Y.-S., Mo L.-H., Xie S.-X., Wang C.-Y., Yu X.-B. Early-age cracking in mass concrete: Modeling and case study of an extra-large exhibition pool. Journal of Building Engineering. 2023. 80. P. 108118. doi: 10.1016/j.jobe.2023.108118.
- Tyurina V.S., Chepurnenko A.S., Akopyan V.F. Prediction of Thermal Cracking During Construction of Massive Monolithic Structures. Applied Sciences. 2025. 15 (3). P. 1499. doi: 10.3390/app15031499.
- Kuriakose B., Rao B.N., Dodagoudar G.R. Early-age temperature distribution in a massive concrete foundation. Procedia Technology. 2016. 25. P. 107 – 114. doi: 10.1016/j.protcy.2016.08.087.
- Makeeva A.V., Semenov K.V., Makeev A.A., Amelina A.V. Crack resistance of massive concrete structures during the construction period taking into account temperature effects. Bulletin of the BSTU named after V.G. Shukhov. 2019. 8. P. 30 – 38. doi: 10.34031/article_5d49408e0e0b61.97206550
- Nesvetaev G.V., Koryanova Yu.I. Forecast of the kinetics of concrete strength during hardening under conditions different from normal. Modern trends in construction, urban development and territorial planning. 2023. 2 (4). P. 59 – 68. doi: 10.23947/2949-1835-2023-2-4-59-68
- Karpenko N.I. General models of reinforced concrete mechanics. Moscow. Strojizdat, 1996. 412 p.
- Nesvetaev G.V., Koryanova Yu.I., Chepurnenko A.S., Sukhin D.P. On the issue of modeling temperature stresses during concreting of massive reinforced concrete slabs. Engineering Journal of Don. 2022. 6 (90). URL: http://vww.ivdon.ru/uploads/article/pdf/IVD_96__5_Nesvetaev_Koryanova.pdf_ae38301ac4.pdf
- Turina V.S., Chepurnenko A.S., Akopyan V.F. Methodology for determining true temperature stresses during the construction of massive monolithic reinforced concrete structures. Construction Materials and Products. 2024. 7 (3). P. 5. doi: 10.58224/2618-7183-2024-7-3-5
Arquivos suplementares
