Experience of concreting a massive monolithic foundation slab

Capa

Citar

Texto integral

Resumo

The large number of recipe and technological factors affecting the stress-strain state of concrete in the initial period of massive monolithic structures erection predetermines the expediency of using modeling of temperature fields and stresses with software packages based on analytical and numerical solutions when developing technological regulations for concreting. Improving the algorithm for calculating temperature fields and stresses taking into account the kinetics of concrete heat release, heat exchange conditions, ambient temperature and the stages of construction of structures is a pressing task. A comparison was made of calculated, laboratory and natural values of some parameters when concreting a foundation slab with a volume of 1642 m3, a surface area of 821 m2, and a thickness of 2 m. Concreting was completed in 13.5 hours with an average intensity of concrete mix placement of 122 m3/h, and a peak intensity of up to 240 m3/h. A method for calculating temperature fields and stresses taking into account the staged nature of construction has been developed in the MATLAB environment. It does not require rebuilding the geometry of the finite element model, adding nodes and elements during the process of laying new layers, and allows for the correct consideration of the dependence of the strength and deformation properties of concrete on the degree of its maturity. The results of calculated and measured temperature values excluding heating from solar radiation showed a discrepancy of up to 10 °C on the upper surface at some points in time. Some discrepancy between the calculated and experimental values of stresses and deformations with a qualitative coincidence in the nature of the curves is due to the neglection of shrinkage and rapid creep of concrete and poor study of the deformation properties of concrete with additives based on polycarboxylate esters at an early age.

Sobre autores

A. Chepurnenko

Don State Technical University

ORCID ID: 0000-0002-9133-8546

G. Nesvetaev

Don State Technical University

ORCID ID: 0000-0003-4153-1046

Yu. Koryanova

Don State Technical University

ORCID ID: 0000-0002-2341-9811

V. Shut

LLS «ArtStroy»

ORCID ID: 0009-0003-6335-0606

V. Tyurina

Don State Technical University

ORCID ID: 0009-0001-6399-401X

Bibliografia

  1. Kaprielov S.S., Sheinfeld A.V., Kiseleva Yu.A., Prigozhenko O.V., Kardumyan G.S., Urgapov V.I. Experience in constructing unique structures from modified concrete during the construction of the Federation complex. Industrial and civil engineering. 2006. 8. P. 20 – 22.
  2. Travush V.I., Shakhvorostov A.I. Concreting the lower slab of the box foundation of the tower of the Lakhta Center complex. High-rise buildings. 2015. 1. P. 92 – 101.
  3. Travush V.I., Nikiforov S.V. Technology of concreting massive structures of foundations of buildings of the MFC "Lakhta Center". Construction and reconstruction. 2025. 2 (118). P. 44 – 55. doi: 10.33979/2073-7416-2025-118-2-44-55
  4. Tazawa E. Influence of autogenous shrinkage on cracking in high-strength concrete. Proceedings of the 4th International Symposium on Utilization of High-strength/High-performance Concrete, Paris. 1996. P. 321 – 330.
  5. Maruyama I., Lura P. Properties of early-age concrete relevant to cracking in massive concrete. Cement and Concrete Research. 2019. 123. P. 105770. doi: 10.1016/j.cemconres.2019.05.015
  6. Semenov K., Kukolev M., Zaichenko N., Popkov S., Makeeva A., Amelina A., Amelin P. Unsteady temperature fields in the calculation of crack resistance of massive foundation slab during the building period. International Scientific Conference on Energy, Environmental and Construction Engineering. Springer, Cham, 2019. P. 455 – 467. doi: 10.1007/978-3-030-42351-3_40
  7. Aslani F., Nejadi S. Creep and Shrinkage Self-Compacting Concrete (SCC) Analytical Models. Journal of Civil Engineering and Architecture. 2012. 6 (1). P. 93 – 100.
  8. Nesvetaev G.V., Koryanova Yu.I., Khezhev T.A. Heat dissipation of cement and design the composition of concrete for massive structures. Construction Materials and Products. 2025. 8 (1).P. 3. doi: 10.58224/2618-7183-2025-8-1-3
  9. Murtazaev S.A.Yu., Saidumov M.S., Alaskhanov A.Kh., Murtazaeva T.S.A. High-strength concretes with increased viability for foundation structures of the MFC "Akhmat-Tower". Fundamental principles of construction materials science. Collection reports International online congress. 2017. P. 875 – 883.
  10. Lingye L., Zhang C., Pengfei Z., Tian W. Influence of temperature rising inhibitor on temperature and stress field of mass concrete. Case Studies in Construction Materials. 2023. 18. e01888. doi: 10.1016/j.cscm.2023.e01888.
  11. Liang T., Luo P., Mao Z., Huang X., Deng M., Tang M. Effect of hydration temperature rise inhibitor on the temperature rise of concrete and its mechanism. Materials. 2023. 16 (8). P. 2992. doi: 10.3390/ma16082992
  12. Chuc N.T., Lam T.V., Bulgakov B.I. Designing the composition of concrete with mineral additives and assessment of the possibility of cracking in cement-concrete pavement. Materials Science Forum. 2018. 931. P. 667 – 673. doi: 10.4028/ href='www.scientific.net/MSF.931.667' target='_blank'>www.scientific.net/MSF.931.667
  13. Klemczak B., Batog M., Pilch M., Żmij A. Analysis of cracking risk in early age mass concrete with different aggregate types. Procedia engineering. 2017. 193. P. 234 – 241. doi: 10.1016/j.proeng.2017.06.209
  14. Duc N.A., Khoa H.N., Van Thuc L. Analysis of the effect of construction technology factors on controlling thermal cracking in mass concrete. Journal of Science and Technology in Civil Engineering (JSTCE)-HUCE. 2024. 18 (4). P. 12 – 29. doi: 10.31814/stce.huce2024-18(4)-02
  15. Kaprielov S.S., Sheinfeld A.V., Chilin I.A. Optimization of concrete technology parameters to ensure thermal crack resistance of massive foundations. Construction materials. 2022. 10. P. 41 – 51. doi: 10.31659/0585-430X-2022-807-10-41-51
  16. Ha J.H., Su Jung Y., Cho Y. Thermal crack control in mass concrete structure using an automated curing system. Automation in Construction. 2014. 45. P. 16 – 24. 10.1016/j.autcon.2014.04.014
  17. Fairbairn E.M., Silvoso M.M., Toledo Filho R.D., Alves J.L., Ebecken N.F. Optimization of mass concrete construction using genetic algorithms. Computers & structures. 2004. 82 (2-3). P. 281 – 299. doi: 10.1016/j.compstruc.2003.08.008
  18. Agakhanov E.K., Kurachev R.M., Chepurnenko A.S., Kulinich I.I. Non-linear heat conduction problem for radiation-heat shield of nuclear reactor. Engineering Journal of Don. 2015. 4. URL: ivdon.ru/ru/magazine/archive/n4y2015/3421
  19. Aniskin N.A., Nguyen Chong Chyk, Bryansky I.A., Dam Huu Heung. Determination of the temperature field and thermal stress state of the massive of stacked concrete by finite element method. Vestnik MGSU. 2018. 13 (11). P. 1407 – 1418. doi: 10.22227/1997-0935.2018.11.1407-1418
  20. Smolana A., Klemczak B., Azenha M., Schlicke D. Experiences and analysis of the construction process of mass foundation slabs aimed at reducing the risk of early age cracks. Journal of Building Engineering. 2021. 44. P.102947. doi: 10.1016/j.jobe.2021.102947
  21. Smolana A., Klemczak B., Azenha M., Schlicke D. Early age cracking risk in a massive concrete foundation slab: Comparison of analytical and numerical prediction models with on-site measurements. Construction and Building Materials. 2021. 301. P. 124135. doi: 10.1016/j.conbuildmat.2021.124135
  22. Bolgov A.N., Nevsky A.V., Ivanov S.I., Sokurov A.Z. Numerical modeling of temperature stresses in concrete of massive structures during the hardening period. Industrial and civil engineering. 2022. 4. P. 6 – 13. doi: 10.33622/0869-7019.2022.04.06-13.
  23. Wang Y.-S., Mo L.-H., Xie S.-X., Wang C.-Y., Yu X.-B. Early-age cracking in mass concrete: Modeling and case study of an extra-large exhibition pool. Journal of Building Engineering. 2023. 80. P. 108118. doi: 10.1016/j.jobe.2023.108118.
  24. Tyurina V.S., Chepurnenko A.S., Akopyan V.F. Prediction of Thermal Cracking During Construction of Massive Monolithic Structures. Applied Sciences. 2025. 15 (3). P. 1499. doi: 10.3390/app15031499.
  25. Kuriakose B., Rao B.N., Dodagoudar G.R. Early-age temperature distribution in a massive concrete foundation. Procedia Technology. 2016. 25. P. 107 – 114. doi: 10.1016/j.protcy.2016.08.087.
  26. Makeeva A.V., Semenov K.V., Makeev A.A., Amelina A.V. Crack resistance of massive concrete structures during the construction period taking into account temperature effects. Bulletin of the BSTU named after V.G. Shukhov. 2019. 8. P. 30 – 38. doi: 10.34031/article_5d49408e0e0b61.97206550
  27. Nesvetaev G.V., Koryanova Yu.I. Forecast of the kinetics of concrete strength during hardening under conditions different from normal. Modern trends in construction, urban development and territorial planning. 2023. 2 (4). P. 59 – 68. doi: 10.23947/2949-1835-2023-2-4-59-68
  28. Karpenko N.I. General models of reinforced concrete mechanics. Moscow. Strojizdat, 1996. 412 p.
  29. Nesvetaev G.V., Koryanova Yu.I., Chepurnenko A.S., Sukhin D.P. On the issue of modeling temperature stresses during concreting of massive reinforced concrete slabs. Engineering Journal of Don. 2022. 6 (90). URL: http://vww.ivdon.ru/uploads/article/pdf/IVD_96__5_Nesvetaev_Koryanova.pdf_ae38301ac4.pdf
  30. Turina V.S., Chepurnenko A.S., Akopyan V.F. Methodology for determining true temperature stresses during the construction of massive monolithic reinforced concrete structures. Construction Materials and Products. 2024. 7 (3). P. 5. doi: 10.58224/2618-7183-2024-7-3-5

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).