Influence of carbon black additives and finely ground waste from stone wool production on characteristics of cement systems

Cover Page

Cite item

Full Text

Abstract

The object of research is cement composites with additives of carbon black and finely ground waste stone wool production. The work aims to design a mix of a cement composite with the additives of carbon black and finely ground waste from stone wool production, which achieves the best strength characteristics. The results show that carbon black is represented on average by particles of 155 microns with inclusions of large agglomerates up to 1-2 mm in size, consisting of almost homogeneous nanoparticles 10-20 nm in size. Carbon black is distinguished by high hydrophobic properties with a true powder density of 900 kg/m3 and a bulk density of 300 kg/m3. The chemical composition of black carbon is 70-80% carbon and 10-15% oxygen, and it also contains impurity compounds of zinc, iron, sulfur, silicon, and other elements. Carbon additives acquire hydrophilic properties in the presence of a plasticizer, and the degree of their influence on hydration becomes less pronounced. The contraction of the binder during the first three hours of hardening is reduced when carbon black is introduced into the cement system in an amount of 8%. A composition with the best strength characteristics was obtained: the content of finely ground waste from stone wool production is 6% by weight of the binder; carbon black content is 4-5%; W/C = 0.2. However, there is difficulty in mixing the mixture at such a low W/C. With a water-cement ratio of 0.3, this problem is solved, and the strength characteristics remain quite high.

About the authors

S. V Klyuev

Belgorod State Technological University пamed after V.G. Shukhov

ORCID iD: 0000-0002-1995-6139

N. A Ayubov

Kh. Ibragimov Complex Research Institute of the Russian Academy of Sciences

ORCID iD: 0009-0001-8129-9598

E. V Fomina

Belgorod State Technological University пamed after V.G. Shukhov

ORCID iD: 0000-0003-0542-0963

M. S Ageeva

Belgorod State Technological University пamed after V.G. Shukhov

ORCID iD: 0000-0002-3114-7078

A. V Klyuev

Belgorod State Technological University пamed after V.G. Shukhov

ORCID iD: 0000-0003-0845-8414

I. V Nedoseko

Ufa State Petroleum Technical University

ORCID iD: 0000-0001-6360-6112

References

  1. Amran M., Fediuk R., Klyuev S., Qader D.N. Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder, Case Studies in Construction Materials. 2022. 17. https://doi.org/10.1016/J.CSCM.2022.E01550
  2. Makul N., Fediuk R., Amran M., Zeyad A.M., Klyuev S., Chulkova I., Ozbakkaloglu T. and ets. Design Strategy for Recycled Aggregate Concrete: A Review of Status and Future Perspectives, Crystals. 2021.11. P. 695.https://doi.org/10.3390/CRYST11060695
  3. Beskopylny A.N., Shcherban’ E.M., Stel’makh S.A., Mailyan L.R. and ets. Improved Fly Ash Based Structural Foam Concrete with Polypropylene Fiber, J Compos Sci. 2023. 7. P. 76. https://doi.org/10.3390/jcs7020076.
  4. Stel’makh S.A., Shcherban’ E.M., Beskopylny A., Mailyan L.R., Meskhi B., Beskopylny N., Zherebtsov Y. Development of High-Tech Self-Compacting Concrete Mixtures Based on Nano-Modifiers of Various Types, Materials. 2022. 15. P. 2739. https://doi.org/10.3390/ma1508273
  5. Beskopylny A.N., Shcherban’ E.M., Stel’makh S.A. and ets. Nano-Modified Vibrocentrifuged Concrete with Granulated Blast Slag: The Relationship between Mechanical Properties and Micro-Structural Analysis, Materials. 2022. 15. P. 4254. https://doi.org/10.3390/ma15124254
  6. Fediuk R., Amran M., Klyuev S., Klyuev A. Increasing the Performance of a Fiber-Reinforced Concrete for Protective Facilities, Fibers. 2021.9. P. 64.https://doi.org/10.3390/FIB9110064.
  7. Shcherban’ E.M., Stel’makh S.A., Mailyan L.R., Beskopylny A.N. and ets. Structure and Properties of Variatropic Concrete Combined Modified with Nano- and Micro-silica, Construction Materials and Products. 2024. 7 (2). P.3. https://doi.org/10.58224/2618-7183-2024-7-2-3
  8. Khanzada F.A., Nazir K., Ishtiaq M., Javed M.F. and ets. Concrete by Preplaced Aggregate Method Using Silica Fume and Polypropylene Fibres, Materials (Basel). 2022. 15. https://doi.org/10.3390/MA15061997
  9. Klyuev S., Klyuev A., Fediuk R., Ageeva M., Fomina E., Amran M., Murali G. Fresh and mechanical properties of low-cement mortars for 3D printing, Constr Build Mater. 2022. 338. P. 127644. https://doi.org/10.1016/J.CONBUILDMAT.2022.127644
  10. Rezania M., Panahandeh M., Razavi N., Berto F. Experimental study of the simultaneous effect of nano-silica and nano-carbon black on permeability and mechanical properties of the concrete, Theoretical and Applied Fracture Mechanics. 2019. 104. P. 102391. https://doi.org/10.1016/J.TAFMEC.2019.102391
  11. Ali F., Khan M.A., Qurashi M.A., Shah S.A.R. and ets. Utilization of Pyrolytic Carbon Black Waste for the Development of Sustainable Materials, Processes. 2020. 8.P. 174. https://doi.org/10.3390/PR8020174
  12. Khan Z.U., Kausar A., Ullah H., Badshah A., Khan W.U. A review of graphene oxide, graphene buckypaper, and polymer/graphene composites: Properties and fabrication techniques, Journal of Plastic Film and Sheeting. 2016. 32. P. 336 – 379. https://doi.org/10.1177/8756087915614612
  13. Yuan H.W., Lu C.H., Xu Z.Z., Ni Y.R., Lan X.H. Mechanical and thermal properties of cement composite graphite for solar thermal storage materials, Solar Energy. 2012. 86. P.3227 – 3233. https://doi.org/10.1016/J.SOLENER.2012.08.011
  14. Ding Y., Chen Z., Han Z., Zhang Y., Pacheco-Torgal F. Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam, Constr Build Mater. 2013. 43. P. 233 – 241. https://doi.org/10.1016/J.CONBUILDMAT.2013.02.010
  15. Ding Y., Liu G., Hussain A., Pacheco-Torgal F., Zhang Y. Effect of steel fiber and carbon black on the self-sensing ability of concrete cracks under bending, Constr Build Mater. 2019. 207. P. 630 – 639. https://doi.org/10.1016/J.CONBUILDMAT.2019.02.160
  16. Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Zolotareva S., Shchekina, A. Shapovalova, L. Sabitov, Phase formation of mortar using technogenic fibrous materials N. Case Studies in Construction Materials. 2022. 16. P. e01099. https://doi.org/10.1016/J.CSCM.2022.E01099
  17. Klyuev S., Fediuk R., Ageeva M., Fomina E. and ets. Technogenic Fiber Wastes for Optimizing Concrete, Materials. 2022. 15. https://doi.org/10.3390/MA15145058.
  18. Yap Z.S., Khalid N.H.A., Haron Z., Mohamed A., Tahir M.M., Hasyim S., Saggaff A. Waste Mineral Wool and Its Opportunities—A Review, Materials. 2021.14. P. 5777. https://doi.org/10.3390/MA14195777
  19. Ferrández D., Yedra E., Morón C., Zaragoza A., Kosior-Kazberuk M. Circular Building Process: Reuse of Insulators from Construction and Demolition Waste to Produce Lime Mortars, Buildings. 2022.12. P. 220. https://doi.org/10.3390/BUILDINGS12020220
  20. Si T., Xie S., Ji Z., Ma C., Wu Z., Wu J., Wang J. Synergistic effects of carbon black and steel fibers on electromagnetic wave shielding and mechanical properties of graphite/cement composites, Journal of Building Engineering. 2022. 45.https://doi.org/10.1016/J.JOBE.2021.103561
  21. Yliniemi J., Luukkonen T., Kaiser A., Illikainen M. Mineral wool waste-based geopolymers, IOP Conf Ser Earth Environ Sci. 2019. 297. P. 012006. https://doi.org/10.1088/1755-1315/297/1/012006
  22. Klyuev A.V., Kashapov N.F., Klyuev S.V., Lesovik R.V., Ageeva M.S., Fomina E.V., Ayubov N.A. Development of Alkali-activated Binders based on Technogenic Fibrous Materials, Construction Materials and Products. 2023. 6. P.60 – 73. https://doi.org/10.58224/2618-7183-2023-6-1-60-73
  23. Piña Ramírez C., Vidales A. Barriguete, Serrano Somolinos R., M. del Río Merino, Atanes Sánchez E. Analysis of fire resistance of cement mortars with mineral wool from recycling, Constr Build Mater. 2020. 265. P. 120349. https://doi.org/10.1016/J.CONBUILDMAT.2020.120349
  24. Klyuev S.V., Kashapov N.F., Radaykin O.V., Sabitov L.S., Klyuev A.V., Shchekina N.A. The Reliability Coefficient for Fibre Concrete Material, Construction Materials and Products 5 (2022) 51–58. https://doi.org/10.58224/2618-7183-2022-5-2-51-58.
  25. Väntsi O., Kärki T. Utilization of recycled mineral wool as filler in wood-polypropylene composites, Constr Build Mater. 2014. 55. P. 220 – 226. https://doi.org/10.1016/J.CONBUILDMAT.2014.01.050
  26. Klyuev A., Klyuev S., Fomina E., Shorstova E., Ageeva M., Nedoseko I., Sabitov L., Shamanov V., Shayakhmetov R., Liseitsev Y., Wastes from the production of heat-insulating basalt wool as an additive in cement-based materials, Case Studies in Construction Materials. 2023. 19. P. e02347. https://doi.org/10.1016/J.CSCM.2023.E02347
  27. Yliniemi J., Kinnunen P., Karinkanta P., Illikainen M. Utilization of Mineral Wools as Alkali-Activated Material Precursor, Materials. 2016. 9.P. 312 https://doi.org/10.3390/MA9050312.
  28. Yliniemi J., Walkley B., Provis J.L., Kinnunen P., Illikainen M. Nanostructural evolution of alkali-activated mineral wools, Cem Concr Compos. 2020. 106. P. 103472. https://doi.org/10.1016/J.CEMCONCOMP.2019.103472
  29. Klyuev A.V., Kashapov N.F., Klyuev S.V., Zolotareva S.V., Shchekina N.A., Shorstova E.S., Lesovik R.V., Ayubov N.A. Experimental studies of the processes of structure formation of composite mixtures with technogenic mechanoactivated silica component, Construction Materials and Products. 2023. 6. P. 5 – 18. https://doi.org/10.58224/2618-7183-2023-6-2-5-18
  30. Papkova Y., Papkov S., Gavrish V. Mathematical modeling of an effect of refractory metal nanopowders on the strength of concrete, (n.d.). https://doi.org/10.1051/e3sconf/202022402013
  31. Dresel A., Teipel U. Influence of the wetting behavior and surface energy on the dispersibility of multi-wall carbon nanotubes, Colloids Surf A Physicochem Eng Asp. 2016. 489. P. 57 – 66. https://doi.org/10.1016/J.COLSURFA.2015.10.027
  32. Luo T., Wang Q. Effects of Graphite on Electrically Conductive Cementitious Composite Properties: A Review, Materials. 2021. 14.P. 4798. https://doi.org/10.3390/MA14174798
  33. Shcherban’ E.M., Beskopylny A.N., Stel’makh S.A., Mailyan L.R., Meskhi B. and ets. Combined Effect of Ceramic Waste Powder Additives and PVA on the Structure and Properties of Geopolymer Concrete Used for Finishing Facades of Buildings. Materials. 2023. 16. P.3259. https://doi.org/10.3390/ma16083259
  34. Papanikolaou I., Litina C., Zomorodian A., Al-Tabbaa A. Effect of Natural Graphite Fineness on the Performance and Electrical Conductivity of Cement Paste Mixes for Self-Sensing Structures, Materials. 2020.13. P. 5833. https://doi.org/10.3390/MA13245833
  35. Shcherban’ E.M., Stel’makh S.A., Beskopylny A.N., Mailyan L.R. and ets. Influence of Sunflower Seed Husks Ash on the Structure Formation and Properties of Cement Concrete, Civil Engineering Journal. 2024. 10(5). P. 1475 – 1493. https://doi.org/10.28991/CEJ-2024-010-05-0

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).