Strength gain kinetics of cements manufactured using fluorgypsum wast

Cover Page

Cite item

Full Text

Abstract

The study is devoted to assessing the possibility of replacing natural gypsum-anhydrite stone with man-made fluorogypsum waste (gypsum dihydrate and anhydrite) as a calcium sulfate additive in the production of Portland cement in compliance with environmental standards. It was found that such a replacement is technically feasible, but requires taking into account the specifics of the waste: when anhydrite is heated in the range of 320–450°C, hydrogen fluoride is released, which emphasizes the need to control the temperature conditions of processing. The kinetics of strength gain of cement-sand samples manufactured according to GOST 30744-2001 is successfully described using the Avrami-Erofeev equation (the proportion of explained variance ≥0.99). It is shown that the composition with fluorogypsum dihydrate slows down the growth of strength at the early stages of hardening, while the addition of anhydrite increases it in the initial period. This is due to the slow release of sulfate ions (SO₄²⁻) from anhydrite, which suppresses the premature formation of ettringite and stimulates the hydration of silicate phases. Replacing natural gypsum with technogenic gypsum increases the setting time of cement and causes a slight decrease in compressive and flexural strength due to differences in the kinetics of new formations and the hydraulic activity of technogenic components. The results confirm the technological feasibility of using fluorogypsum waste in the cement industry. The work contributes to solving the problem of recycling technogenic waste and reducing resource costs in the construction industry.

About the authors

R. A Nazirov

Siberian Federal University

ORCID iD: 0000-0002-7413-842X

G. E Nagibin

Siberian Federal University

ORCID iD: 0000-0001-6197-1124

E. N Fedorova

Siberian Federal University

ORCID iD: 0000-0001-8066-3645

A. S Samoilo

Siberian Federal University

ORCID iD: 0000-0002-8447-6465

S. А Silyanov

Siberian Federal University

ORCID iD: 0000-0002-8453-1639

A. S Demianov

Siberian Federal University

ORCID iD: 0009-0006-9935-9460

References

  1. Huang X., Jiang M., Zhao X., Tang C. Mechanical properties and hydration mechanisms of high-strength fluorogypsum-blast furnace slag-based hydraulic cementitious binder. Construction and Building Materials. 2016. 127. P. 137 – 143. doi: 10.1016/j.conbuildmat.2016.09.152
  2. Research department and content philosophy. [Electronic resource]. URL: http://www.statista.com/aboutus/our-research-commitment
  3. Rusina O.N. Methodology for applying models and algorithms to improve the efficiency of managing the technological process of recycling calcium sulfate waste: PhD thesis. Tomsk State University of Control Systems and Radioelectronics. Tomsk, 2018. P. 21
  4. Kuzmin M.P., Larionov L.M., Kuzmina M.Yu., Grigoryev V.G. Industrial use of fluorogypsum – waste from hydrofluoric acid production. Bulletin of universities. Investments. Construction. Real estate. 2019. 9 (2). P. 324 – 333. doi: 10.21285/2227-2917-2019-2-324-333
  5. Kuzmin M., Larionov L., Kuzmina M., Kuzmina A., Ran J.Q., Burdonov A. Evgeniy Zenkov Production of Portland cement using fluorine gypsum – hydrofluoric acid waste. Magazine of Civil Engineering. 2022. 111(3). P. 10. doi: 10.34910/MCE.111.13
  6. Magallanes-Rivera R.X., Escalante-García J.I. Hemihydrate or waste anhydrite in composite binders with blast-furnace slag: Hydration products, microstructures and dimensional stability. Construction and Building Materials. 2014. 71. P. 317 – 326. doi: 10.1016/j.conbuildmat.2014.08.054
  7. Gallardo-Heredia M., Magallanes-Rivera R.X., Almanza-Robles J.M., Avila-López U., Luna-Álvarez J.S. Effect of citric acid on calcium sulfoaluminate cements synthesised from industrial wastes at low temperature. Advances in Cement Research. 2020. 32 (3). P. 125 – 136. doi: 10.1680/jadcr.18.00019
  8. Escalante-García J.I., Rios-Escobar M., Gorokhovsky A., Fuentes A.F. Fluorgypsum binders with OPC and PFA additions, strength and reactivity as a function of component proportioning and temperature. Cement and Concrete Composites. 2008. 30 (2). P. 88 – 96. doi: 10.1016/j.cemconcomp.2007.05.015
  9. Escalante-García J.I., Rios-Escobar M., Gorokhovsky A., Fuentes A.F. Fluorgypsum binders with OPC and PFA additions, strength and reactivity as a function of component proportioning and temperature. Cementand Concrete Composites. 2008. 30 (2). P. 88 – 96. doi: 10.1016/j.cemconcomp.2007.05.015
  10. Ponomarenko A.A. Conditioning technology and application of fluoroanhydrite in the composition of general-purpose cements: PhD thesis. Ural Federal University named after the first President of Russia B.N. Yeltsin. Ekaterinburg, 2015. P. 22
  11. Nithurshan M., Elakneswaran Y. A systematic review and assessment of concrete strength prediction models. Case Studies in Construction Materials. 2023. 18. P. 01830. doi: 10.1016/j.cscm.2023.e01830
  12. Tsamatsoulis D. Kinetics of Cement Strength Development. 10th WSEAS International Conference on mathematical and computational methods science and engineering. 2008. P. 51-56.
  13. Wu K., Dou Zh., Liu Zh., Xu J. Study on hydration heat release model and its influence coefficient of addition concrete. Applied Sciences. 2024. 14 (6). P. 2276. doi: 10.3390/app14062276
  14. Tsamatsoulis D., Stathoulopoulou C., Preloretzos L. Application of the exponential kinetic model in the hydration of cements produced according to EN 197-1. Acta Chimica Slovenica. 2008. 55(1). P. 170 – 174.
  15. Ma B., Dui G., Jia Zh., Yang B., Yang Ch., Gao Q., Qin L., Ma J. A simple cement hydration model considering the influences of water-to-cement ratio and mineral composition. Computer Modeling in Engineering and Sciences. 2021. 127 (3). P. 1073 –1091. doi: 10.32604/cmes.2021.015776
  16. Hu N., Ben Sh., Chen Sh., Zhao H. Hydration of early-age composite cement paste using low-field NMR. Advances in Materials Science and Engineering. 2024. P. 10. doi: 10.1155/2024/1003479
  17. Lin F., Meyer C. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure. Cement and Concrete Research. 2009. 39 (4). P. 255 – 265. doi: 10.1016/j.cemconres.2009.01.014
  18. Xiao W., Wen H., Li N. A simple cement hydration model considering the influences of water-to-cement ratio and mineral composition. Computer Modeling in Engineering and Sciences. 2021. 127(3). P. 1073 – 1091. doi: 10.32604/cmes.2021.015776
  19. Soutsos M., Kanavaris F. Compressive strength estimates for adiabatically cured concretes with the Modified Nurse–Saul (MNS) maturity function. Construction and Building Materials. 2020. 255. P. 119236. doi: 10.1016/j.conbuildmat.2020.119236
  20. Utepov M.B., Akimbekov E.T., Isabekov R.E., Dakenov E.K. Evaluation of the Nurse–Saul method using maturity sensors for monitoring concrete strength. Bulletin of Karaganda University. Series "Physics". 2022. 105 (1). P. 34 – 41. doi: 10.31489/2022PH1/66-74
  21. Peng X., Zhuang Z., Yang Q. Predictive modeling of compressive strength for concrete at super early age. Materials. 2022. 15 (14). P. 4914. doi: 10.3390/ma15144914
  22. Cao H., Xiao B., Qin F., Yang Q. A Mathematical model for predicting the ultra-early-age strength of concrete. Coatings. 2024. 14 (9). P. 1140. doi: 10.3390/coatings14091140
  23. Bezjak A., Jelenic I., On the determination of rate constants for hydration processes in cement pastes. Cement and Concrete Research. 1980. 10 (4). P. 553 – 563.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).