Influence of mechanical activation on the characteristics of glass concrete

Cover Page

Cite item

Full Text

Abstract

This work presents the study of effect of mechanical activation on the properties of glass concrete binder, based on mechanically activated glass and calcium oxide. The goal of the study was to identify patterns of changes in the microstructure and phase composition of the material with different durations of grinding and subsequent hydration. We found that under mechanical activation for 12 minutes, all calcium oxide enters into a chemical reaction with the formation of the mineral combeyite (Na₂Ca₂Si₃O₉). Further hydration of the material leads to the transformation of combeyite into diverite (Na₂Ca₃Si₆O₁₆) and wollastonite (CaSiO₃). The microstructure is characterized by lamellar structures, an increase in strength is provided by a decrease in the particle size and an increase in the chemical interaction of the components. It is shown that the duration of mechanical activation has a significant effect on the physical and mechanical characteristics of the material. A correlation was established between the duration of grinding and the strength and elastic modulus indices. Thermal and moisture treatment additionally increases the strength of the material, reaching values over 100 MPa. The obtained results demonstrate the potential of the proposed technology for creating highly efficient building materials with specified physical and technical characteristics, contributing to the savings of traditional cement binders and reducing the pollution of the construction industry.

About the authors

S. S Dobrosmyslov

Federal Research Center "Krasnoyarsk Science Center"of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

ORCID iD: 0000-0003-4402-7304

V. A Shakirova

Siberian Federal University

ORCID iD: 0009-0009-0445-0715

R. A Nazirov

Siberian Federal University

ORCID iD: 0000-0002-7413-842X

A. S Voronin

Federal Research Center "Krasnoyarsk Science Center"of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University; Bauman Moscow State Technical University

ORCID iD: 0000-0001-6908-9945

M. S Molokeev

Siberian Federal University; Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0002-8297-0945

A. I Bezrukikh

Siberian Federal University

ORCID iD: 0000-0002-0448-9793

A. S Samoilo

Siberian Federal University

ORCID iD: 0000-0002-8447-6465

O. M Sharonova

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”

ORCID iD: 0000-0002-5613-3203

References

  1. Beskopylny A.N., Stelmakh S.A., Shcherban E.M., Saidumov M.S., Abumuslimov A.S., Mezhidov D.A., Wang Z. Eco-Friendly Foam Concrete with Improved Physical and Mechanical Properties, Modified with Fly Ash and Reinforced with Coconut Fibers. Construction Materials and Products. 2025. 8 (1). doi: 10.58224/2618-7183-2025-8-1-1
  2. Helmy S.H., Tahwia A.M., Mahdy M.G., Abd Elrahman M., Abed M.A., Youssf O. The Use of Recycled Tire Rubber, Crushed Glass, and Crushed Clay Brick in Lightweight Concrete Production: A Review. Sustainability. 2023. 15. Article 10060. doi: 10.3390/su151310060
  3. Sinitsin D.A., Yudin A.A., Parfenova A.A., Zanina A.F., Nedoseko I.V. Investigation of Structure and Properties of Expanded Clay Waste with the Purpose of Their Use in the Construction Industry. Construction Materials and Products. 2025. 8 (1). 4. doi: 10.58224/2618-7183-2025-8-1-4
  4. Johnson O.A., Napiah M., Kamaruddin I. Potential Uses of Waste Sludge in Construction Industry: A Review. Research Journal of Applied Sciences, Engineering and Technology. 2014. 8 (4). P. 565 – 570. ISSN: 2040-7459; e-ISSN: 2040-7467. doi: 10.19026/rjaset.8.1006
  5. Shah I.H., Miller S.A., Jiang D., Myers R.J. Cement Substitution with Secondary Materials Can Reduce Annual Global CO2 Emissions by Up to 1.3 Gigatons. Nature Communications. 2022. 13. Article 5758. doi: 10.1038/s41467-022-33289-7
  6. Bolaji I.I., Zainol F.A., Awang Z. Technology Innovation and Sustainable Organizational Development in the Waste Management Industry. Multidisciplinary Reviews. 2025. 8. Article e2025026. doi: 10.31893/multirev.2025026
  7. Gowtham R., Manikanda Prabhu S., Gowtham M., Ramasubramani R. A Review on Utilization of Waste Glass in Construction Field. IOP Conference Series: Materials Science and Engineering. 2021. 1130. Article № 012010. doi: 10.1088/1757-899X/1130/1/012010
  8. Nodehi M., Taghvaee V.M. Sustainable Concrete for Circular Economy: A Review on Use of Waste Glass. Glass Structures & Engineering. 2022. 7. P. 3 – 22. doi: 10.1007/s40940-021-00155-9
  9. Qaidi S., Najm H.M., Abed S.M., Özkılıç Y.O., Al Dughaishi H., Alosta M., Sabri M.M.S., Alkhatib F., Milad A. Concrete Containing Waste Glass as an Environmentally Friendly Aggregate: A Review on Fresh and Mechanical Characteristics. Materials. 2022. 15. Article 6222. doi: 10.3390/ma15186222
  10. Ahmad M., Ali M., Turi J.A., Manan A., Al-Dala’ien R.N.S., Rashid K. Potential Use of Recycled Materials on Rooftops to Improve Thermal Comfort in Sustainable Building Construction Projects. Frontiers in Built Environment. 2022. 8. Article 1014473. doi: 10.3389/fbuil.2022.1014473
  11. Jahami A., Khatib J., Raydan R. Production of Low-Cost, High-Strength Concrete with Waste Glass as Fine Aggregates Replacement. Buildings. 2022. 12. Article 2168. doi: 10.3390/buildings12122168
  12. Orouji M., Zahrai S.M., Najaf E. Effect of Glass Powder & Polypropylene Fibers on Compressive and Flexural Strengths, Toughness and Ductility of Concrete: An Environmental Approach. Structures. 2021. 33. P. 4616 – 4628. doi: 10.1016/j.istruc.2021.07.048
  13. Mansour M.A., Ismail M.H.B., Latif Q.B.a.I., Alshalif A.F., Milad A., Al Bargi W.A. A Systematic Review of the Concrete Durability Incorporating Recycled Glass. Sustainability. 2023. 15. Article 3568. doi: 10.3390/su15043568
  14. Goode A.H., Tyrrell M.E., Feld I.L. Glass Wool from Waste Glass. US Department of Interior, Bureau of Mines. 1972. 7708.
  15. Qin D., Hu Y., Li X. Waste Glass Utilization in Cement-Based Materials for Sustainable Construction: A Review. Crystals. 2021. 11. Article 710. doi: 10.3390/cryst11060710
  16. Szudek W., Gołek Ł., Malata G., Pytel Z. Influence of Waste Glass Powder Addition on the Microstructure and Mechanical Properties of Autoclaved Building Materials. Materials. 2022. 15. Article 434. doi: 10.3390/ma15020434
  17. Dobrosmyslov S.S., Zadov V.E., Nazirov R.A., Shakirova V.A., Voronin A.S., Simunin M.M., Fadeev Y.V., Molokeev M.S., Shabanova K.A., Khartov S.V. High-Strength Building Material Based on a Glass Concrete Binder Obtained by Mechanical Activation. Buildings. 2023. 13. Article 1992. doi: 10.3390/buildings13081992
  18. Lapshina O.V., Boldyrev E.V., Boldyrev V.V. Role of Mixing and Milling in Mechanochemical Synthesis (Review). Russian Journal of Inorganic Chemistry. 2021. 66 (3). P. 433 – 453. doi: 10.1134/S0036023621030116
  19. Liu X., Li Y., Zeng L., Li X., Chen N., Bai S., He H., Wang Q., Zhang C. A Review on Mechanochemistry: Approaching Advanced Energy Materials with Greener Force. Advanced Materials. 2022. 34. Article 2108327. doi: 10.1002/adma.202108327
  20. Butyagin P.Yu. Kinetics and Nature of Mechanochemical Reactions. Russian Chemical Reviews. 1971. 40 (11). P. 901 – 915. doi: 10.1070/RC1971v040n11ABEH001912
  21. Ardila-Fierro K.J., Hernández J.G. Intermediates in Mechanochemical Reactions. Angewandte Chemie International Edition. 2024. 63. Article № e202317638. doi: 10.1002/anie.202317638
  22. Grigorieva T.F., Barinova A.P., Lyakhov N.Z. Mechanosynthesis of Nanocomposites. Journal of Nanoparticle Research. 2003. 5. P. 439 – 453. doi: 10.1023/A:1026068412372
  23. Garrels R.M., Christ C.L. Solutions, Minerals, and Equilibria. Harper & Row, New York, NY, USA. 1965. 36 p.
  24. Dobrosmyslov S.S., Voronin A.S., Fadeev Y.V., Endzhievskaya I.G., Khartov S.V. Theoretical and Experimental Study of the Effect of Wollastonite on the Physical and Mechanical Properties of Concrete. Journal of Physics: Conference Series. 2021. Vol. 2094. Article 022077. doi: 10.1088/1742-6596/2094/2/022077
  25. Shelby J.E. Introduction to Glass Science and Technology. Royal Society of Chemistry. 2020.
  26. Barin I. Thermochemical Data of Pure Substances. VCH Verlagsgesellschaft mbH. 3rd ed. 1995. 1885 p.
  27. Baláž P. Mechanochemistry in Minerals Engineering. Springer Berlin Heidelberg. 2008. P. 257 – 296.
  28. Boldyrev V.V., Pavlov S.V., Goldberg E.L. Interrelation between Fine Grinding and Mechanical Activation. International Journal of Mineral Processing. 1996. 44-45. P. 181 – 185. doi: 10.1016/S0301-7516(95)00028-3
  29. Suryanarayana C. Mechanical Alloying and Milling. Progress in Materials Science. 2001. 46 (1). P. 1 – 184. doi: 10.1016/S0079-6425(99)00010-9
  30. Bruker AXS. TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data. User’s Manual. Bruker AXS, Karlsruhe, Germany. 2008.
  31. Fischer R.X., Tillmanns E.K. Revised Data for Combeite, Na₂Ca₂Si₃O₉. Acta Crystallographica Section C: Crystal Structure Communications. 1987. C43. P. 1852 – 1854. doi: 10.1107/S010827018709845X.
  32. Kahlenberg V. Concerning the Incorporation of Potassium in the Crystal Structure of Combeite (Na₂Ca₂Si₃O₉). Mineralogy and Petrology. 2023. 117. P. 293 – 306. doi: 10.1007/s00710-022-00801-2
  33. Thomas J.J., Jennings H.M., Chen J.J. Influence of Nucleation Seeding on the Hydration Mechanisms of Tricalcium Silicate and Cement. The Journal of Physical Chemistry C. 2009. 113 (11). P. 4327 – 4334. doi: 10.1021/jp809811w
  34. Zhao K., Zhang P., Kong X., Li H., Zhao H., Zhou C. Recent Progress on Portland Cement Hydration Kinetic Models and Experimental Methods. Journal of the Chinese Ceramic Society. 2022. 50 (6). P. 1728 – 1761. doi: 10.14062/j.issn.0454-5648.20210872
  35. Kahlenberg V., Girtler D., Arroyabe E., Kaindl R., Többens D.M. Devitrite (Na₂Ca₃Si₆O₁₆) – Structural, Spectroscopic and Computational Investigations on a Crystalline Impurity Phase in Industrial Soda-Lime Glasses. Mineralogy and Petrology. 2010. 100. P. 1 – 9. doi: 10.1007/s00710-010-0116-8
  36. Knowles K.M., Li B., Ramsey C.N.F., Thompson R.P. Microstructural Characterisation of Devitrite, Na₂Ca₃Si₆O₁₆. Advanced Materials Research. 2012. 585. P. 51 – 55. doi: 10.4028/ href='http://www.scientific.net/AMR.585.51' target='_blank'>http://www.scientific.net/AMR.585.51.
  37. Wang K., Yang Z., Kang D., Fang C., Jiao Y. Crystal Evolution of Porous Calcium Silicate Synthesized Using the Fly Ash-Based Extraction Silicon Solution. SSRN. doi: 10.2139/ssrn.4596916
  38. Gomes Ribeiro C.E., Sanchez Rodriguez R.J., de Carvalho E.A. Microstructure and Mechanical Properties of Artificial Marble. Construction and Building Materials. 2017. 149. P. 149 – 155. doi: 10.1016/j.conbuildmat.2017.05.119
  39. Quenard D.A., Xu K., Kinzel H.M., Bentz D.P., Martys N.S. Microstructure and Transport Properties of Porous Building Materials. Materials and Structures. 1998. 31. P. 317 – 324. doi: 10.1007/BF02484133.
  40. Kacker K.P., Satiya R.C. Differential Thermal Analysis in the Development of Building Materials – A Review. Transactions of the Indian Ceramic Society. 1972. 31 (1). P. 1 – 17. doi: 10.1080/0371750X.1972.10840792
  41. Cioffi R., Marroccoli M., Santoro L., Valenti G.L. DTA Study of the Hydration of Systems of Interest in the Field of Building Materials Manufacture. Journal of Thermal Analysis. 1992. 38. P. 761 – 770. doi: 10.1007/BF01981166
  42. Klimesch D.S., Ray A. The Use of DTA/TGA to Study the Effects of Ground Quartz with Different Surface Areas in Autoclaved Cement-Quartz Pastes. Part 1: A Method for Evaluating DTA/TGA Results. Thermochimica Acta. 1996. 289. P. 41 – 54. doi: 10.1016/0040-6031(96)03033-X
  43. Klimesch D.S., Gutovic M., Ray A. Use of DTA-TG in the Evaluation of Autoclaved Cement-Based Systems. Part I. Cement-Brick Waste Blends. Journal of Thermal Analysis and Calorimetry. 2004. 75. P. 197 – 204. doi: 10.1023/B:JTAN.0000044418.85850.f6
  44. Burduhos Nergis D.D., Abdullah M.M.A.B., Sandu A.V., Vizureanu P. XRD and TG-DTA Study of New Alkali Activated Materials Based on Fly Ash with Sand and Glass Powder. Materials. 2020. 13 (343). doi: 10.3390/ma13020343
  45. Burduhos-Nergis D.D., Vizureanu P., Sandu A.V., Istrate B. XRD and TG-DTA Analysis of Fly Ash-Based Geopolymer Composite Reinforced with Recycled Glass Fibers. In: Sandu A.V., Vizureanu P., Abdullah M.M.A.B., Nabialek M., Ghazali C.M.R., Sandu I. (eds) Selected Papers from ICIR EUROINVENT – 2023. ICIR EUROINVENT 2023. Springer Proceedings in Materials. 38. Springer, Cham. 2023. doi: 10.1007/978-3-031-45964-1_4
  46. Florea I.C., Bucur C.M., Florea E.A., Diaconescu C.E., Dupleac D. The Effect of Curing Temperature on the Hydration Process of CEM II Cement Type. Bulletin of the Polytechnic University of Bucharest, Series B. 2025. 87 (1). ISSN: 1454-2331.
  47. Wang Y., Lu H., Wang J., He H. Effects of Highly Crystalized Nano C-S-H Particles on Performances of Portland Cement Paste and Its Mechanism. Crystals. 2020. 10 (9). Article 816. doi: 10.3390/cryst10090816
  48. Richardson I.G. Tobermorite/jennite- and tobermorite/calcium hydroxide-based Models for the Structure of C-S-H: Applicability to Hardened Pastes of Tricalcium Silicate, h-Dicalcium Silicate, Portland Cement, and Blends of Portland Cement with Blast-Furnace Slag, Metakaolin, or Silica Fume. Cement and Concrete Research. 2004. 34. P. 1733 – 1777. doi: 10.1016/j.cemconres.2004.05.034
  49. Wang K., Yang Z., Zhang D., Kang D., Fang C., Jiao Y. Crystal Evolution of Porous Calcium Silicate Synthesized Using the Fly Ash-Based Extraction Silicon Solution. SSRN Electronic Journal. 2023. doi: 10.2139/ssrn.4596916
  50. Nguyen T.V. Ultra-High-Strength Concretes with Organomineral Modifier Containing Expansion Component: Specialty 05.23.05 "Building Materials and Products": Abstract of Candidate's Dissertation in Technical Sciences. Moscow. 2012. 24 p.
  51. Narayanan S. Elastic Modulus of Concrete. 2021. 34. Available online: https://www.researchgate.net/publication/352863356_Elastic_Modulus_of_Concrete (accessed on 1 November 2022).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).