Effects of multi-walled carbon nanotubes on polymer degradation in modified binder and their impact on the performance of stone mastic asphalt concrete

Cover Page

Cite item

Full Text

Abstract

Bitumen, the primary binder in asphalt concrete, lacks sufficient resistance to prolonged mechanical and environmental stress. To improve its durability, styrene-butadiene polymers are commonly used, although they are prone to oxidative degradation and phase instability. This study proposes a nanostructured approach to enhancing the stability and performance of polymer-modified bitumen (PMB) through the synergistic use of multiwalled carbon nanotubes (MWCNTs) and hydrocarbon plasticizers-specifically, selective oil refining extracts (SORE) and vacuum distillates (VD). Short-term oxidative degradation was assessed using isothermal RTFOT aging at 153, 163, and 173 °C. A classical first-order Arrhenius kinetic model was applied, with dynamic viscosity serving as a rheological proxy for SBS network integrity. Nanomodified compositions exhibited a 6-7-fold reduction in degradation rate constant (from 13.97 × 10⁻⁵ to 1.98 × 10⁻⁵ s⁻¹) and a 25-60% decrease in the preexponential factor, indicating suppressed molecular mobility and enhanced network cohesion. Performance was validated on SMA-16 specimens, showing up to 240% improvement in shear adhesion at 50 °C and 27% higher water resistance. Rutting resistance also increased, with rut depth reduced to 1.6–1.8 mm after 20,000 loading cycles. To integrate physical, mechanical, and durability characteristics, a set of Partial Quality Criteria (PQC) was developed and used to calculate a Generalized Effectiveness Coefficient (GEC), supporting multi-criteria optimization of asphalt mixtures. These findings confirm that nanostructured dispersed systems based on MWCNTs and hydrocarbon carriers not only delay oxidative degradation but also ensure multifunctional performance gains critical for high-traffic pavement applications.

About the authors

S. Yu Obukhova

National Research Moscow State University of Civil Engineering

ORCID iD: 0000-0003-4490-0871

V. A Gladkikh

National Research Moscow State University of Civil Engineering

ORCID iD: 0000-0003-1953-1584

T. K Kuzmina

National Research Moscow State University of Civil Engineering

ORCID iD: 0000-0002-8454-1765

References

  1. Shekhovtsova S.Y., Korolev E.V., Inozemtcev S.S., Yu J., Yu H. Method of forecasting the strength and thermal sensitive asphalt concrete. Magazine of Civil Engineering. 2019. 5. P. 129 – 140. doi: 10.18720/MCE.89.11
  2. Lyapin A.A., Parinov I.A., Buravchuk N.I., Cherpakov A.V., Shilyaeva O.V., Guryanova O.V. Improving Road Pavement Characteristics. Springer: Cham, Switzerland. 2020.
  3. Tkach E., Shestakov N., Chertes K. Quality Assessment of Building Materials in the Construction of Bridge Structures. AIP Conference Proceedings. 2023. doi: 10.1063/5.0143535
  4. Guo M., Liang M., Jiao Y., Zhao W., Duan Y., Liu H. A review of phase change materials in asphalt binder and asphalt mixture. Construction and Building Materials. 2020. 258 (11). doi: 10.1016/j.conbuildmat.2020.119565
  5. Tiwari N., Baldo N., Satyam N., Miani M. Mechanical characterization of industrial waste materials as mineral fillers in asphalt mixes: Integrated experimental and machine learning analysis. Sustainability. 2022. 14(10). P. 1 – 27. doi: 10.3390/su14105946
  6. Bieliatynskyi A., Yang S., Pershakov V., Shao M., Ta M. Features of the structure and properties of stone mastic asphalt. Materialwissenschaft und Werkstofftechnik. 2024. 55 (7). P. 986 – 994. doi: 10.1002/mawe.202300181
  7. Zheng Q., He P., Zhang D., Weng Y., Lu J., Wang T. A Holistic View of Asphalt Binder Aging under Ultraviolet Conditions: Chemical, Structural, and Rheological Characterization. Buildings. 2024. 14 (10). doi: 10.3390/buildings14103276
  8. Gallego J., Gulisano F., Contreras V., Páez A. Optimising heat and re-compaction energy in the thermomechanical treatment for the assisted healing of asphalt mixtures. Construction and Building Materials. 2021. 292 (10). doi: 10.1016/j.conbuildmat.2021.123431
  9. Ghadi H., Ghollasimood A., Pakniyat H., Khansari H., Eskandari H. Improving the resistance of asphalt mixtures against fatigue cracking with an interlayer. Geosynthetics: Leading the Way to a Resilient Planet. 2023. P. 266 – 272. CRC Press.
  10. Bellatrache Y., Ziyani L., Dony A., Taki M., Haddadi S. Effects of the addition of date palm fibers on the physical, rheological and thermal properties of bitumen. Construction and Building Materials. 2020. 239 (1). doi: 10.1016/j.conbuildmat.2019.117808
  11. Jin X., Guo N., You Z., Wang L., Wen Y., Tan Y. Rheological properties and micro-characteristics of polyurethane composite modified asphalt. Construction and Building Materials. 2020. 234 (7). doi: 10.1016/j.conbuildmat.2019.117395
  12. Findik F. Nanomaterials and their applications. Periodicals of Engineering and Natural Sciences. 2021. 9. P. 62 – 75.
  13. Golestani B., Nam B.H., Nejad F.M., Fallah S. Nanoclay application to asphalt concrete: Characterization of polymer and linear nanocomposite-modified asphalt binder and mixture. Construction and Building Materials. 2015. 91. P. 32 – 38. doi: 10.1016/j.conbuildmat.2015.05.019
  14. Zhang H.L., Su M.M., Zhao S.F., Zhang Y.P., Zhang Z.P. High and low temperature properties of nano-particles/polymer modified asphalt. Construction and Building Materials. 2016. 114(1). P. 323 – 332. doi: 10.1016/j.conbuildmat.2016.03.118
  15. Zhang H., Duan H., Zhu C., Chen Z., Luo H. Mini-review on the application of nanomaterials in improving anti-aging properties of asphalt. Energy Fuels 2021. 35 (14). doi: 10.1021/acs.energyfuels.1c01035
  16. Obukhova S., Korolev E., Gladkikh V. The Influence of Single-Walled Carbon Nanotubes on the Aging Performance of Polymer-Modified Binders. Materials. 2023. 16 (24). doi: 10.3390/ma16247534
  17. Eisa M.S., Mohamady A., Basiouny M.E., Abdulhamid A., Kim J.R. Mechanical properties of asphalt concrete modified with carbon nanotubes (CNTs). Case Studies in Construction Materials. 2022. 16 (4). doi: 10.1016/j.cscm.2022.e00930
  18. Babagoli R. Laboratory investigation of the performance of binders and asphalt mixtures modified by carbon nano tube, poly phosphoric acid, and styrene butadiene rubber. Construction and Building Materials. 2021. 275 (1). doi: 10.1016/j.conbuildmat.2020.122178
  19. de Melo J.V.S., Trichês G., de Rosso L.T. Experimental evaluation of the influence of reinforcement with Multi-Walled Carbon Nanotubes (MWCNTs) on the properties and fatigue life of hot mix asphalt Construction and Building Materials. 2018. 162. P. 369 – 382.
  20. Xu J., Zhang A., Zhou T., Cao X., Xie Zh. A study on thermal oxidation mechanism of styrene–butadiene–styrene block copolymer (SBS). Polymer Degradation and Stability. 2007. 92 (9). P. 1682 – 1691.
  21. Galano A. Carbon Nanotubes as Free-Radical Scavengers. The Journal of Physical Chemistry C. 2008. 112 (24). P. 8922 – 8927.
  22. Martínez-Morlanes M.J., Castell P., Alonso P.J., Martinez M.T., Puértolas J.A. Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiated ultrahigh molecular weight polyethylene composites. Carbon. 2012. 50 (7). P. 2442 – 2452.
  23. Shi X., Jiang B., Wang J., Yang Y. Influence of wall number and surface functionalization of carbon nanotubes on their antioxidant behavior in high density polyethylene. Carbon. 2012. 50(3). P. 1005 – 1013.
  24. Sai T., Ran S., Guo Z., Song P., Fang Z. Recent advances in fire‐retardant carbon‐based polymeric nanocomposites through fighting free radicals. SusMat. 2022. 2 (4). P. 411 – 434.
  25. Xu X., You Y., Liu X., Wei D., Guan Y., Zheng A. Experimental and density functional theory investigations on the antioxidant mechanism of carbon nanotubes. Carbon. 2021. 177. P. 189 – 198.
  26. Jambhulkar S., Ravichandran D., Zhu Y., Thippanna V., Ramanathan A., Patil D., Song K. Nanoparticle Assembly: From Self‐Organization to Controlled Micropatterning for Enhanced Functionalities. Small 2024. 20 (6). doi: 10.1002/smll.202306394
  27. Laidler K.J. The development of the Arrhenius equation. Journal of Chemical Education.1984. 61 (6). P. 494.
  28. Atkins P., De Paula J., Friedman R. Physical chemistry: quanta, matter, and change. Oxford University Press. 2014.
  29. Wang Y., Sun L., Qin Y. Aging mechanism of SBS modified asphalt based on chemical reaction kinetics. Construction and Building Materials.2015. 91. P. 47 – 56.
  30. Cong P., Wang J., Luo W., Zhang Y. Effects of aging on the properties of SBS modified asphalt binders containing anti-aging agents. Construction and Building Materials. 2021. 302 (14-15). doi: 10.1016/j.conbuildmat.2021.124413
  31. Lu X., Isacsson U. Effect of ageing on bitumen chemistry and rheology. Construction and Building Materials. 2002. 16(1). P. 15 – 22.
  32. Wang R., Yue M., Xiong Y., Yue J. Experimental study on mechanism, aging, rheology and fatigue performance of carbon nanomaterial/SBS-modified asphalt binders. Construction and Building Materials. 2021. 268. doi: 10.1016/j.conbuildmat.2020.121189
  33. Wang H., Yang J., Gong M. Rheological characterization of asphalt binders and mixtures modified with carbon nanotubes. In 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials.2016. P. 141 – 150.
  34. Arifuzzaman M., Tarefder R.A., Islam M.S. The behavior of carbon nanotubes (CNTs) as a modifier to resist aging and moisture damage in asphalt. Nanoscience & Nanotechnology-Asia.2021. 11(2). P. 224 – 229.
  35. Ashish P.K., Singh D. Effect of Carbon Nano Tube on performance of asphalt binder under creep-recovery and sustained loading conditions. Construction and Building Materials. 2019. 215. P. 523 – 543.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).