Opportunities for environmentally sustainable development of low-carbon technologies in cement production

Cover Page

Cite item

Full Text

Abstract

In the context of the transition to a low-carbon economy, the development and implementation of environmentally sustainable technologies in cement production is becoming a key priority. Therefore, the development of new binding materials with reduced clinker content or no clinker at all is becoming a key area for reducing the carbon footprint in construction. Use of clinker-free binders, such as geopolymers and various equivalents based on mineral additives, can significantly reduce the carbon footprint of the construction sector in the environment. The most promising and appropriate benchmark is the disposal of industrial waste of aluminosilicate oxide composition with subsequent mechanical and alkaline activation. For the first time, the microstructure of geopolymers based on aspiration cement dust and tuff has been comprehensively studied. The theoretical prerequisite for the creation of a binder system of such a concept is the synthesis of sufficiently strong and resistant to external manifestations of alkali metals, including the structures of frame aluminosilicates with a hidden crystalline structure. The results of a comprehensive study (X-ray phase analysis, scanning electron microscopy, electron dispersion spectrometry, differential thermal analysis and IR spectroscopy) indicate the presence of characteristic hydration reaction products in the geopolymer paste. The following have been identified in the composition of the material: hydrated aluminosilicates; aluminates; silicate groups of sodium and calcium; mineral phases (quartz, calcite); feldspars of the albite-orthoclase series; micaceous components, etc. The data obtained confirm the typical composition characteristic of the processes of structure formation in geopolymer systems. The results obtained on the key results of the conducted studies confirm the high efficiency of the proposed technology and guarantee increased strength and durability of geopolymer concrete.

About the authors

N. B Sarsenbayev

South-Kazakhstan University named after M. Auezov

ORCID iD: 0000-0002-6049-6605

M. Sh Salamanova

Grozny State Oil Technical University named after acad. M.D. Millionshchikov; Kh. Ibragimov Complex Institute of the Russian Academy of Sciences

ORCID iD: 0000-0002-1293-7090

B. K Sarsenbayev

South-Kazakhstan University named after M. Auezov

ORCID iD: 0000-0002-6306-2562

G. R Sauganova

South-Kazakhstan University named after M. Auezov

ORCID iD: 0000-0001-6025-6540

R. S Fediuk

Polytechnical Institute, Far Eastern Federal University

ORCID iD: 0000-0002-2279-1240

M. M Begentayev

K. Satpayev Kazakh National Research Technical University

ORCID iD: 0000-0001-9688-4370

A. S Kolesnikov

South-Kazakhstan University named after M. Auezov

ORCID iD: 0000-0002-8060-6234

A. A Abduova

South-Kazakhstan University named after M. Auezov

ORCID iD: 0000-0001-5389-6953

References

  1. López F.J., Sugita S., Tagaya M., Kobayashi T., Metakaolin-Based Geopolymers for Targeted Adsorbents to Heavy Metal Ion Separation, Journal of Materials Science and Chemical Engineering. 2014. 02. P. 16 – 27. https://doi.org/10.4236/msce.2014.27002
  2. Donayev A., Shapalov S., Sapargaliyeva B., Ivakhniyuk G. Studies of waste from the mining and metallurgical industry with determination of its impact on the life of the population. News of the National Academy of Sciences of the Republic of Kazakhstan. Series Geology and Technical Sciences. 2022. (4). P. 55 – 68.
  3. Chen L., Wang Z., Wang Y., Feng J., Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer, Materials (Basel). 2016. 9. P. 767 – 780. https://doi.org/10.3390/ma9090767
  4. Amran M., Abdelgader H.S., Onaizi A.M., Fediuk R., Ozbakkaloglu T., Rashid R.S., Murali G. 3D-printable alkali-activated concretes for building applications: A critical review, Construction and Building Materials. 2022. 319. P. 126126. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.126126
  5. Volodchenko A.A., Efficient Silicate Composites of Dense Structure using hollow microspheres and Unconventional Aluminosilicate Raw Materials. Construction Materials and Products. 2023. 6. P. 19 – 34. https://doi.org/10.58224/2618-7183-2023-6-2-19-34
  6. Kocherov Ye.N., Kolesnikov A., Makulbekova G., Mamitova A., Ramatullaeva L., Medeshev B., Kolesnikova O. Investigation of the physico‑chemical and mechanical properties of expanded ceramsite granules made on the basis of coal mining waste. Journal of Composites Science. 2024. 8 (8). P. 306 – 312. doi: 10.3390/jcs8080306
  7. Semenov P., Uzunian A., Davidenko A. First study of radiation hardness of lead tungstate crystals at low temperatures. Nuclear Instruments Methods Physics Research Section. A Accel. Spectrometers Equipment. 2007. 582. P. 575 – 580. doi: 10.1016/j.nima.2007.08.178
  8. Kabirova A.I., Ibragimov R.A., Genç B., Korolev E.V., Kiyamov I.K., Kiyamova L.I., Research Trends in the Mechanoactivation of Clay Minerals Used in Obtaining Geopolymers, Construction Materials Production. 2023 6.https://doi.org/10.58224/2618-7183-2023-6-5-3
  9. Hardjito D., Wallah S., Sumajouw D., Rangan B., On the Development of Fly Ash-Based Geopolymer Concrete, ACI materials journal. 2004. 101. P. 467 – 472. doi: 10.14359/13485
  10. Davidovits K., Geopolymer chemistry & applications, Edition: 4th, Publisher: Institut Géopolymère, Geopolymer Institute, Saint-Quentin, France Editor: Joseph Davidovits.ISBN: 9782954453118 (5th ed.). 2015. 280 p.
  11. Amran M., Onaizi A.M., Fediuk R., Vatin N.I., Muhammad Rashid R.S., Abdelgader H., Ozbakkaloglu T. Self-Healing Concrete as a Prospective Construction Material: A Review, Materials (Basel). 2022. 15. P. 3214. doi: 10.3390/ma15093214
  12. Ahmad M.R., Chen B., Haque M.A., Saleem Kazmi S.M., Munir M.J., Development of plant-concrete composites containing pretreated corn stalk bio-aggregates and different type of binders, Cement Concrete Composites. 2021. 21. P. 359 – 368. doi: 10.1016/j.cemconcomp.2021.104054
  13. Teh S.H., Wiedmann T., Moore S., Mixed-unit hybrid life cycle assessment applied to the recycling of construction materials. Journal of Economic Structures.2018. P. 259 – 268. doi: 10.1186/s40008-018-0112-4
  14. Ban C.C., Nordin N.S.A., Ken P.W., Ramli M., Hoe K.W., The high volume reuse of hybrid biomass ash as a primary binder in cementless mortar block, American Journal of Applied Sciences. 2014. 11. P. 1369 – 1378. doi: 10.3844/ajassp.2014.1369.1378
  15. Tong K.T., Vinai R., Soutsos M.N, Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders, Journal of Cleaner Production. 2018. P. 129 – 138. doi: 10.1016/j.jclepro.2018.08.025
  16. Klyuev S., Klyuev A., Fediuk R., Ageeva M., Fomina E., Amran M., Murali G., Fresh and mechanical properties of low-cement mortars for 3D printing. Construction Building Materials. 2022. 338. 127644. doi: 10.1016/j.conbuildmat.2022.127644
  17. Bondar D., Lynsdale C.J., Milepaste N.B., Hassani N., Ramezanianpour A.A. Engineering properties of alkali activated natural pozzolan concrete. 2nd International Conference on Sustainable Construction Materials and Technologies, 2010. doi: 10.14359/51664217
  18. Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Zolotareva S., Shchekina N., Shapovalova A., Sabitov L. Phase formation of mortar using technogenic fibrous materials, Case Study Construction Materials. 2022. 16. P. e01099. doi: 10.1016/j.cscm.2022.e01099
  19. Potapov V., Serdan A., Gorev D., Zubaha S., Shunina E., Colloid silica in hydrothermal heat carrier: Characteristics, technology of extraction, industrial applications. IOP Conference Series. Earth Environmental Science. 2019. P. 123 – 136. DOI: /10.1088/1755-1315/249/1/012043
  20. Fernández-Jiménez A., Palomo A., Criado M., Microstructure development of alkali-activated fly ash cement: A descriptive model, Cement and Concrete Research. 2005. P. 269 – 278. doi: 10.1016/j.cemconres.2004.08.021
  21. Payá J., Agrela F., Rosales J., Morales M.M., Borrachero M.V. Application of alkali-activated industrial waste. New Trends Eco-Efficient. Concrete recycling. 2019. P. 259-268. DOI: /10.1016/b978-0-08-102480-5.00013-0
  22. Li Z., Ding Z., Zhang Y., Development of sustainable cementitious materials, Concrete Performance with Ground Granulated Blast Furnace Slag as Supplementary Cementitious Materials. 2004. P. 369 – 378.
  23. Gollakota A.R.K., Volli V., Shu C.M., Progressive utilisation prospects of coal fly ash: A review, Science of the Total Environment. 2019. doi: 10.1016/j.scitotenv.2019.03.337
  24. Provis J.L., Myers R.J., White C.E., V. Rose, J.S.J. Van Deventer, X-ray microtomography shows pore structure and tortuosity in alkali-activated binders.Cement and Concrete Research. 2012. P. 158 – 169. doi: 10.1016/j.cemconres.2012.03.004
  25. Pasupathy K., Berndt M., Sanjayan J., Pathmanathan R. Durability performance of concrete structures built with low carbon construction materials. Energy Procedia. 2016. P. 303 – 312.doi: 10.1016/j.egypro.2016.06.130
  26. Villa C., Pecina E.T., Torres R., Gómez L., Geopolymer synthesis using alkaline activation of natural zeolite, Construction Building Matererials. 2010. doi: 10.1016/j.conbuildmat.2010.04.052
  27. Alex T.C., Kalinkin A.M., Nath S.K.,. Gurevich B.I, Kalinkina E.V., Tyukavkina V.V., Kumar S., Utilization of zinc slag through geopolymerization: Influence of milling atmosphere, Int. J. Miner. Process. 2013. 123. P. 102 – 107. doi: 10.1016/j.minpro.2013.06.001
  28. Sapargaliyeva B.O., Bychkov A.Yu., Alferyeva Ya.O., Syrlybekkyzy S., Altybaeva Zh.K., Nurshakhanova L.K., Seidaliyeva L.K., Suleimenova B.S., Zhidebayeva A.E., Zhanikulov N.N., Zhakipbaev B.Ye., Suleimenova T.N., Koshkarbayeva Sh.K., Suigenbayeva A.Zh. Thermodynamic modeling of the formation of the main minerals of cement clinker and zinc fumes in the processing of toxic technogenic waste of the metallurgical industry. Rasayan Journal of Chemistry. 2022. 15 (3). P. 2181 – 2187. doi: 10.31788/RJC.2022.1536230
  29. Bataev D.-S., Salamanova M.S., Murtazaev S.-A.Y., Viskhanov S.S.,. Murtazaev S.-A.Y, Utilization of Cement Kiln Dust in Production of Alkali-Activated Clinker-Free Binders, in: Proc. Int. Symp. "Engineering Earth Sci. Appl. Fundam. Res. Dedic. to 85th Anniv. H.I. Ibragimov (ISEES 2019), Atlantis Press, Paris, France.2019. doi: 10.2991/isees-19.2019.89
  30. Yusuf M.O., Megat Johari M.A, Ahmad Z.A., Maslehuddin M., Evolution of alkaline activated ground blast furnace slag-ultrafine palm oil fuel ash based concrete, Mater. Des. 2014. doi: 10.1016/j.matdes.2013.09.047
  31. Pacheco-Torgal F., Tam V.W.Y., Labrincha J.A., Ding Y., De brito J. Handbook of Recycled Concrete and Demolition Waste, 2013. doi: 10.1533/9780857096906
  32. Silva R., Castro-Gomes J.P., Albuquerque A. Effect of immersion in water partially alkali-activated materials obtained of tungsten mine waste mud, Construction Building Materials. 2012. doi: 10.1016/j.conbuildmat.2012.02.069
  33. Marvila M.T.,Azevedo A.R.G., Vieira C.M.F., Reaction mechanisms of alkali-activated materials. Revew IBRACON Estruturas Materials. 2021. 14. doi: 10.1590/s1983-41952021000300009
  34. Lee W.K.W., J.S.J. van Deventer, Chemical interactions between siliceous aggregates and low-Ca alkali-activated cements, Cem. Concr. Res. 2007. doi: 10.1016/j.cemconres.2007.03.012
  35. Bernal S.A., Provis J.L., Durability of alkali-activated materials: Progress and perspectives, Journal American Ceramic. 2014. doi: 10.1111/jace.12831
  36. Dombrowski K., Buchwald A., Weil M., The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. Journal of Materials Science. 2007. 42. P.3033 – 3043. DOI: /10.1007/s10853-006-0532-7
  37. Volokitina I., Sapargaliyeva B., Agabekova A., Syrlybekkyzy S., Volokitin A., Nurshakhanova L., Nurbaeva F., Kolesnikov A., Sabyrbayeva G., Izbassar A., et. al. Increasing Strength and Performance Properties of Bimetallic Rods during Severe Plastic Deformation. Case Studies in Construction Materials. 2023. 19. P. 2256. doi: 10.1016/j.cscm.2023.e02256
  38. Volokitina I., Volokitin A., Denissova A., Kuatbay Y., Liseitsev Y. Effect of thermomechanical processing of building stainless wire to increase its durability. Case Studies in Construction Materials.2023. 19. P. 2346.
  39. Singh B. Middendorf, Geopolymers as an alternative to Portland cement: An overview, Construction and Building Materials. 2020. doi: 10.1016/j.conbuildmat. 2019. P. 117455.
  40. He R., Dai N., Wang Z. Thermal and Mechanical Properties of Geopolymers Exposed to High Temperature: A Literature Review. Advances in Civil Engineering. 2020. doi: 10.1155/2020/7532703.
  41. Khater H.M., El Gawwad H.A.A. Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT, Advances in Nano Research. 2015. 3. P. 225 – 242. doi: 10.12989/anr.2015.3.4.225
  42. Seitmagzimov A., Sarsenbayev B.K, Seitmagzimova G.M., Aimenov Zh.T., Kurtayev A.S., Geopolymeric cements based on South-Kazakhstan clay loam produced by non-clinker and non-fired scheme. 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and SustainabilityConference Paper. Open Access. 2015. doi: 10.3208/jgssp.KAZ-11
  43. Khudyakova T.M., Kolesnikova O.G., Zhanikulov N.N., Ashirbaev H.A., Kolesnikova V.A. Low-Basicity Cement, Problems and Advantages of its Utilization. Refractories and Industrial Ceramics.2021.62. P. 369 – 374. DOI: /10.1007/s11148-021-00610-8
  44. Muratov B., Shapalov S., Syrlybekkyzy S., Volokitina I., Zhunisbekova D., Takibayeva G., Nurbaeva F., Aubakirova T., Nurshakhanova L. et al. Physico‑chemical study of the possibility of utilization of coal ash by processing as secondary raw materials to obtain a composite cement clinker. Journal of Composites Science. 2023. 7. P. 234 – 240.
  45. Sarsenbayev B., Murtazaev S., Salamanova M., Kuldeyev E., Saidumov M., Sarsenbayev N., Auyesbek S., Sauganova G., Abduova A. Utilization of Anthropogenic and Natural Waste to Produce Construction Raw Materials. Sustainability. 2025. 17 (7). P. 2791. doi: 10.3390/su17072791

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).